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To our masters
Gérard Henri de Vaucouleurs
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Mustafa Kemal Atatürk

A good teacher is like a candle that consumes
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Introduction

Vladimir Igorevich Arnold

Celestial mechanics is the origin of dynamical systems, linear
algebra, topology, variational calculus, and symplectic
geometry.

In itsmost classical sense, celestialmechanics is the discipline that studies themotion
of the Solar System bodies such as planets, their satellites, asteroids, and comets, as
well as artificial satellites and space probes, in the context of classical mechanics and
Newton’s theory of gravitation.1 The nature of the problems addressed and the degree
of precision required for the results do not mandate the use of general relativity but
in special cases, when Einstein’s gravitational theory compensates for a falsification
of classical mechanics (for example, in the full explanation of Mercury’s perihelion
advance; see the last two sections of Chap. 4) or when the measurements are so
accurate as to challenge relativity itself (for instance, in experiments designed to
verify the Lense–Thirring effect2).

The origins or at least the motivations of celestial mechanics are intertwined with
the very roots of astronomy, the oldest of all natural sciences (see, for instance, [1] and
[2]). Already during Prehistory, the closest and brightest celestial bodies and the stars
visible to the naked eye were observed with the aim of describing and then predicting
theirmotions. The reasons for this interest reside in the apparent centrality ofmankind

1 The locution celestialmechanicswas coined by the Frenchmathematician Pierre Simon deLaplace
in the late eighteenth century: from 1798 to 1825, he published the five volumes of his monumental
Traité de mécanique céleste. The term dynamics, from the Greek word for force, was instead
introduced (originally in French) by the German polymath Gottfried Leibniz (1646–1716) right a
century earlier.
2 Joseph Lense (1890–1985) and Hans Thirring (1888–1976) were Austrian physicists. They
predicted the relativistic correction to the precession of a gyroscope near a large rotating mass.
For example, while classically a satellite orbiting a spherical symmetric body is unaffected by the
possible rotation of the primary, relativity requires that the plane of the satellite’s orbit suffers a
precession in the direction of the primary’s rotation axis.

vii



viii Introduction

with respect to the firmament and in the manifest perfection of the stars, both fixed
(true stars) andwandering (planets, from the ancientGreek term for vagabond). These
otherwise unchanging light sources3 appeared to be subject to periodicmovements as
well as recurring phenomena (Lunar phases, Solar andLunar eclipses,Meton cycle4).
They showed no signs of birth or death,5 which placed them outside the domain of
time, making them eternal. By contrast, anything on Earth appeared corruptible and
imperfect. Despite this remarkable diversity, eternity and celestial perfection seemed
to be able to tune in well with earthly events (such as seasonal variations) and hence
with the rhythms of human life. his reassuring synergy generated the belief of a
conspiracy between the two distinct Aristotelian worlds, celestial and terrestrial, one
within the other and with a boundary at the sphere of the Moon,6 and each one with
its own composition and physics.7 In the wake of an anthropocentric reading of the
world, the next logical step was to postulate that the whole construction had been

3 Apart from a few novae and supernovae visible to the naked eye, the photometric variability of
stars was virtually unknown to ancient astronomers, and in any case ignored. The Moon and the
planets did change with time their luminosity and aspect (Moon phases), but these alterations were
periodic.
4 If a phenomenon is produced by a combination of two independent periodic phenomena with
periods P1 and P2, it is also periodic with period P = m P1 = n P2, where m and n are the
smallest integers satisfying the relation. For instance, about 2700 years ago Chaldean astronomers
discovered that every 223 synodic months, equivalent to about 18.03 Julian years (each lasting
365.25 days), the Sun and the Moon resume the same relative positions. Hence, the chronology of
the eclipses repeats almost identically every 18.03 years (but Solar eclipses will occur in different
places on Earth). This periodicity, christened the Saros cycle in 1686 by the English astronomer
Edmund Halley (1656–1742) who derived the name from a Babylonian or Greek term of uncertain
meaning, is the consequence of two requirements for an eclipse to occur: (1) the Moon must be
in conjunction or opposition with the Sun, which happens with the period of a synodic month,
every 29.53 days, and (2) the Moon, whose orbit is inclined by ∼ 5◦, must lie on the ecliptic,
otherwise the alignment is incomplete (hence ineffective). This requires that the Moon be transiting
through one node of its orbit, which happens twice in a draconic month of 27.21 days. Now,
223×29.53 � 242×27.21 � 6585 days = 18.03 years. The Saros cycle has had great importance
since, owing to the extraordinary suggestiveness of eclipses (especially Solar), predicting them gave
great power to those who were able to do so.

Another example is provided by the Meton cycle. In the fifth century BC, the Athenian Meton
discovered (or learned from the Chaldeans) that the phases of the Moon repeat at approximately
the same dates every 19 years. The duration of this cycle comes from the equation 235 × 29.53 �
19 × 365.25 days.
5 Random appearances of a comet or nova star were treated as meteorological (earthly) phenomena.
6 According to a model devised by Plato and then accepted by the Greek-Alexandrian culture with a
few exceptions and some complications dictated by the need for greater adherence to observational
evidence, the world consisted of spheres concentric to the Earth, each assigned to a wandering star
according to the sequence; Moon, Mercury, Venus, Sun, Mars, Jupiter, and Saturn.
7 To the four ultimate elements thatmake up the terrestrialworld (fire, air,water, and earth) according
to Empedocles of Akragas, Sicily (5th century BC), Aristotle (384–322 BC) added the ether or
quintessence (Latinate name for the Greek ether), filling the celestial spheres. Note that, according
to the Stagirite, two are the types ofmotion, natural and violent. Cause of natural motion is the return
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created8 for the central lodger, the human being, a creature privileged by God(s).
Wandering stars were then interpreted as pencils with which the deity represented
the messages addressed to men, to guide, admonish, or simply inform them9. This
claimmade astronomy become the instrument of the mysterious astrology, judged as
the highest form of knowledge and therefore delivered into the hands of wise priests.
A pseudoscience that easily slipped into superstition:

This is the excellent foppery of the world, that, when we are sick in fortune, often the surfeit
of our own behaviour, we make guilty of our disasters the sun, the moon, and the stars; as if
we were villains on necessity; fools by heavenly compulsion; knaves, thieves, and treachers
by spherical pre-dominance; drunkards, liars, and adulterers by an enforc’d obedience of
planetary influence; and all that we are evil in, by a divine thrusting on. An admirable
evasion of whore-master man, to lay his goatish disposition to the charge of a star! My
father compounded with my mother under the Dragon’s Tail, and my nativity was under
Ursa Major, so that it follows I am rough and lecherous. Fut! I should have been that I am,
had the maidenliest star in the firmament twinkled on my bastardizing.

W. Shakespeare, King Lear [Act 1, Sc. 2]
The simple use of celestial phenomena for orientation, time keeping, or practical

life, as in the Works and Days of the Greek Hesiod (c. 750–650 BC) which regards
agriculture, while so important, has long appeared as secondary to astrology.10 Exam-
ples of such attempts to interpret the motion of the stars are some Neolithic construc-
tions dating back to that period, such as Stonehenge on Salisbury Plain in Wiltshire,
England, and themenhirs (long stones inCeltic languages). Later, various populations
in the Middle East, Egypt, Central America, and China elaborated this relationship
with the sky through frequent and well-documented observations of astronomical
phenomena and through the construction of huge architectural works such as the
Egyptian pyramids and the Mesopotamian ziggurats.

Activities of this kind are widespread inGreece. Pythagoras of Samos (c. 570–495
BC) placed the Sun and the other planets on concentric spheres around a central fire
andmade this correspond to the harmony of themusical scales. Plato (c. 428–348BC)
was one of the first to formulate a geocentric hypothesis for the Solar System, stating
that the celestial spheres carrying the wandering stars rotate around the Earth, seen
as a motionless globe. He guessed the sphericity of the Sun, claiming that the Moon

of a body to its natural place (up for air and fire, down for water and earth) where it will remain in
quiet; the velocity is proportional to the size of the body. The cause of violent motion is an external
motor in contact with the body (remote actions are not allowed); the speed is directly proportional
to the applied force and inversely to the magnitude of the body. Aristotle also postulated that the
natural motions are rectilinear (but not uniform) on Earth, while they are circular and uniform in
the sky.
8 The idea of a genesis is common to most ancient civilizations (but not to the thought of Aristotle),
and to modern cosmology too (the Big Bang).
9 In one of his writings, Johannes Kepler stated: That the sky does something to man is obvious
enough: but what it does specifically remains hidden.
10 In the Harmonies of the World (1619), where he reports the discovery of his famous Third Law,
Kepler writes: The soul of the newly born baby is marked for life by the pattern of the stars at the
moment it comes into the world, unconsciously remembers it, and remains sensitive to the return of
configurations of a similar kind.
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does not shine on its own but receives its light from the Sun. Other contributions to the
knowledge of the Solar Systemweremade, for example, by theMilesian philosophers
Thales (c. 624–548 BC) and Anaximander (c. 610–546 BC), the Pythagorean and
Pre-Socratic Philolaus of Croton (470–385 BC), and Heraclides Ponticus (385–322
or 310 BC), philosopher and astronomer, contemporary to Eudoxus.

Retrograde motion of Mars. The apparent reversal in the direction of the planet’s motion is caused
by the different angular velocity of Mars relative to that of the Earth’s observer. Credit: NASA

The concept of the geocentric system, placing the Earth at the center of the
universe, started to spread in the Western World. With various upgrades, it would
endure for many centuries. Eudoxus of Cnidus (c. 408–355 BC), student of Plato
and the Pythagorean Archytas (428–360 BC), elaborated the model of homocentric
spheres: a universe as a clockworkwith the Earth at the geometric center. Each sphere
carries a planet in a circular and uniform motion, different from that of others. This
simple model worked reasonably well; but in order to match the observations (in
particular, the so-called retrograde motion, when a planet reverses temporarily its
prograde motion with respect to fixed stars), more spheres were needed for some
planets, so much so that the overall number grew largely.

The reason why this geocentric conception managed to survive until the time
of Copernicus, and even longer in some circles, is mainly threefold. It was able to
account for some phenomena such as the lack of an annual parallax (mistakenly
assigned to the Earth’s immobility and not to the enormous distances of the stars)
or the absence of any apparent consequence of a high orbital velocity required for
an Earth revolving about the Sun. It was also in keeping with men’s innermost need
to consider themselves at the center of the universe as proof of a direct connection
to God(s). The third reason has been the enormous cultural influence of Aristotle,
the first physicist of ancient philosophers, the Master of those who know, as Dante
calls him in Canto IV of the Inferno. He theorized the geocentric model, discussing
all of its consequences. At the end of the Middle Ages, the scholastic philosophers,
represented chiefly by the most learned Italian scholar Thomas Aquinas (1225–
1274), merged the geocentric cosmology with the Christian theology, which also
required an immobile Earth to match the prayer of Joshua to the Lord reported in
the Old Testament: Sun, stand still over Gibeon, and you, moon, over the Valley of
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Aijalon (Joshua 10, 13). By now an integral part of Christian doctrine, geocentrism
became an absolute dogma.

Note that, to account for improved observations, Aristotle (384–322 BC) had been
forced to add more spheres to the original ones of Eudoxus. His celestial clockwork
became a complex system of 55 spheres animated by the so-called primum mobile
(firstmover) which allowed the spheres to turn, each onewell tuned to the appropriate
motion, through friction.

Heliocentric theories, however, were not completely abandoned. For instance,
Aristarchus of Samos (c. 310–230 BC) refined the cosmological model of Heraclides
Ponticus in which the Sun was at the center of the universe, making the description
of planetary motions simpler while not matching better the observations, since the
orbits were still circular. Later, Apollonius of Perga (c. 262–192 BC) introduced the
system of epicycles and deferents. The motivation for this elegant complication was
to save both appearances and the uniform circular motions by combining two such
motions in the following way: planets were made to revolve at a constant velocity on
circular orbits, called epicycles, whose centers were made to rotate around the Earth
on immaterial circles called deferents. This geometrical construction was modified
further by Hipparchus of Nicaea (c. 190–120 BC) who, to account for the observed
properties of the Moon (change of velocity and angular size during a lunation) and
of the planets (change of brightness), placed the Earth off the center of each deferent,
in an eccentric position.

Earth
planet

epicycle

deferent

Earth

planet

epicycle

deferent

Earth

planet

epicycle

deferent

equant

Sketch of the planetary models based on (top-left) epicycle and deferent, (top-right) eccentric, and
(bottom) equant
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Finally, during Hellenism, Claudius Ptolemy (c. 100–170 AD), who worked in
the famous Musaeum11 of Alexandria, in Egypt, perfected the hypothesis of eccen-
tric motion by shifting, for each planet, the focus of the uniform motion from the
geometrical center to a point placed symmetrically with respect to the Earth. With
this gimmick, which was never fully accepted by his followers, the Alexandrian
philosopher was able to keep up with the Aristotelian principles of circularity of the
orbits and uniformity of motions, improving significantly the accuracy of the model
in representing the planetary motions (required to compute reliable ephemerides).

Claudius Ptolemy’s geocentric model in Andreas Cellarius’ Harmonia macrocosmica (1660)

Mankind had towait for the sixteenth century to see the birth ofmodern astronomy
and thewithdrawal of the geocentric hypothesis that had required several adjustments
over the time to meet the evidences. The Polish astronomer Nicolaus Copernicus

11 The Musaeum (temple of the Muses), which included the Library, was erected in Alexandria
by Ptolomy I Soter (c. 367–283 BC), the first successor of Alexander the Great. Conceived as a
meeting place for scholars and also for teaching, it represented for centuries the highest cultural
institution of the Hellenistic world. It was perhaps destroyed by order of the Emperor Aurelian in
272 AD.
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(1473–1543) was the first to build a heliocentric system, then called after his name.
He described the motions of planets through circular orbits around the Sun, keeping
the epicyclical architecture, including the eccentric. In other words, Copernicus was
both a revolutionary and a conservative. In the same direction were the fundamental
contributions of the Italian Galileo Galilei 1564–1642) and the German Johannes
Kepler (1571–1630).

Illustration of the Hypothesis Tychonica from Johannes Hevelius’ Selenographia (1647)

In particular, by using the precise observations made by the Danish Tycho Brahe
(1546–1601), Kepler established that the planets move on elliptical orbits where
they accelerate while approaching the Sun and decelerate when moving away. He
summarized his speculations into three empirical laws, named after him; the first
two published in Astronomia Nova (1609) and the last one in Harmonices Mundi
(1619). Galilei, instead, created the basis to demolish the principle of immutability
of the heaven. With his pioneering observations of the sky through a telescope, he
discovered the Solar spots, the phases of Venus, and the existence of four large
satellites12 orbiting around Jupiter, all together strongly supporting the heliocentric
hypothesis.

However, it was onlywith IsaacNewton (1642–1726) that celestialmechanicswas
born. Indeed the English genius (see [3]) managed to elaborate a theory of (universal)

12 The term satellite was coined for the occasion by Kepler drawing on the Latin satelles, a word
of Etruscan origin which means bodyguard (used in the Middle Ages also in a derogatory sense).
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gravitation capable of describing, in the framework of his mechanics, the motions
of the Solar System bodies, which later the Anglo-German astronomer William
Herschel (1738–1822) would prove to work for the sidereal world too (binary stellar
systems). It establishes that two point-like bodies attract each other with a force
directed along the line joining them with an intensity f which is proportional to the
product of the (gravitational) masses mi and m j and inversely to the square of the
mutual distance ri j , through the formula:

f = G
mi m j

r2i j

(i �= j = 1, 2) (1)

where G is the universal gravitational constant.13 It couples with Newton’s second
law of dynamics stating the proportionality, for each of the two bodies, between
acceleration (in an inertial reference frame) and force per unit mass:

mi
d2ri

dt2
= −G

mi m j

r2i j

ri j

ri j
(i �= j = 1, 2) (2)

This has the identical structure of the law describing of interaction between two
charges in electromagnetism, named Coulomb law after the French physicist and
engineer Charles Augustin de Coulomb (1736–1806), with the only remarkable
difference that charges occur with two opposite signs. Thus, contrary to gravity
that is purely attractive, electric forces can be also repulsive. They mutually cancel
at astronomical scales owing to the neutrality of macroscopic bodies, leaving a free
field to gravity. The equation describing the gravitational action between two celes-
tial bodies is therefore at the foundation of all the phenomena treated by celestial
mechanics (motion of Solar System planets, comets, asteroids, artificial satellites)
as well as double stars and even the interaction between two galaxies. Newton’s
gravitational force is an instantaneous action at distance: a concept that would have
horrified Aristotle and that Newton himself disliked, accepting it only on a pragmatic
basis:

Hitherto I have not been able to discover the cause of those properties of gravity from
phenomena, and I frame no hypotheses [hypotheses non fingo]; for whatever is not deduced
from the phenomena is to be called an hypothesis; and hypotheses, whether metaphys-
ical or physical, whether of occult qualities or mechanical, have no place in experimental
philosophy. In this philosophy particular propositions are inferred from the phenomena, and

13 G is an empirical physical constant involved by Isaac Newton in the calculation of the dynamical
effects of his universal gravitational law and by Albert Einstein in his general theory of relativity,
where it quantifies the relation between the geometry of spacetime and the stress–energy tensor.
The notation (G) was introduced in 1890 by the British physicist Charles Bays (1855–1944). Its
modern value, G = 6.67430× 10−11 m3kg−1s−2, was first (implicitly) measured with an accuracy
of 1% by the English natural philosopher Henry Cavendish (1731–1810) with an experiment aimed
at determining the average density of the Earth.



Introduction xv

afterwards rendered general by induction. Thus it was that the impenetrability, the mobility,
and the impulsive force of bodies, and the laws of motion and of gravitation, were discovered.
And to us it is enough that gravity does really exist, and act according to the laws which we
have explained, and abundantly serves to account for all the motions of the celestial bodies,
and of our sea.

Letter of Newton to Robert Hooke, 15 February 1676

Newton’s model endured for 230 years and was finally reformulated in 1916 by
Albert Einstein (1879–1955) with his general relativity, while continuing to represent
well the situations of weak gravitational fields and of velocities far away from that
of light.

Since the first appearance of Newton’s Philosophiae Naturalis Principia Mathe-
matica in 1687 (re-published twice, in 1713 and 1726, with corrections and improve-
ments), the mechanical theory of the Lucasian professor, coupled with the gravity
law, has collected countless successes in its applications to both terrestrial and celes-
tial phenomena. Probably, the triumphwas reached with the discovery of Neptune on
the tip of the pen, as François Arago14 (1786–1853), director of the Paris Observatory,
described the prediction made by Urbain Le Verrier (1811–1877) on the position on
the sky of an unknown planet perturbing the orbit of Uranus (see also pg. 27). This
sort of miracle was made possible by the high degree of development reached by
celestialmechanics since the eighteenth century owing to thework ofLeonhardEuler,
Joseph Louis Lagrange, Pierre-Simon Laplace, and many others. After World War
II, a new age of the discipline started with (a) the coming into operation of electronic
computers which allowed to solve numerically those problems where accuracy was
conflicting with mathematical difficulties, and (b) the development of space flights.
For a review of the history of celestial mechanics in the last three centuries, see [4],
and for an overview of Celestial mechanics: past, present, future, [5].

This book aims at making a mathematical description of the gravitational inter-
action of celestial bodies. The approach to the problem is purely formal. It allows us
to write equations of motion and solve them as much as possible, either exactly or
by approximate techniques when there is no other way. The results obtained provide
predictions that can be compared with observations. Several appendices have been
added to the five main chapters. They review some selected mathematical tools,
deepen some questions (so as not to interrupt the logic of the main frame with heavy
technicalities or digressions), offer a few examples, and provide an overview of
special functions which are useful here as well as in many other fields of physics.
We also present, as an example of a modern application, an original investigation of
the potential of a torus. General relativity is used only in Sect. 4.14 dealing with the
perihelion advance of Mercury; to follow this section, the reader is not required to
know deeply about general relativity.

The present version, which corrects, improves, and enlarges the lecture notes
written in Italian by one of us some forty years ago, takes advantage of the experience

14 Françoįs Arago (1786–1853) was a French mathematician, physicist, astronomer, and politi-
cian. He promoted awareness and dissemination of the discovery of a revolutionary photographic
technique by Louis-Jacques-Mandé Daguerre (1787–1851).
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of many years of lecturing of celestial mechanics by both of us, either at the V. N.
Karazin Kharkiv National University (EB) and at the Padua University (MC).

We are grateful to Crescenzo Tortora, then at the Naples University Federico II
and now at the INAF-CapodimonteAstronomical Observatory, Naples, who long ago
reviewed the Italian manuscript, and to Nina Akerman, now at the Padua Univer-
sity, and the students of V. N. Karazin Kharkiv National University, who helped
us edit the current version, checking for both errors and unclear passages. Useful
suggestions and criticisms came to us from the colleagues Elbaz Abouelmagd and
Niraj Pathak of the National Research Institute of Astronomy and Geophysics
of Egypt (NRIAG), Albert Kotvytskiy and Sergey Poslavsky of V. N. Karazin
Kharkiv National University, and Ester Piedipalumbo of Naples University Federico
II. We are especially grateful to Filippo Zerbi, Scientific Director of the Italian
National Institute for Astrophysics (INAF), for the constant support to complete this
work, and to the V. N. Karazin Kharkiv National University, the Institute of Radio
Astronomy, National Academy of Sciences of Ukraine, and the INAF-Capodimonte
Astronomical Observatory for their hospitality.

Kharkiv, Ukraine
Naples, Italy
February 2022

Elena Bannikova
Massimo Capaccioli
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Chapter 1
About the N-Body Problem

John von Neumann (from the podium of the first national
meeting of the Association for Computing Machinery, in 1947)

If people do not believe that mathematics is simple, it is only
because they do not realize how complicated life is.

The basic task of classical celestial mechanics, set by the need to model and predict
the motions of Solar System bodies in the context of Newton’s mechanics and gravi-
tational law, is to determine the dynamical evolution of systemswith a finite1 number
N of distinct bodies that are subject tomutual gravitational forces. The classic formu-
lation2 of the problem, given by the system of equations (1.2), is straightforward, but
the exact solution does not exist for N >2 even under oversimplified assumptions,
i.e., when: i. the external forces are deliberately disregarded (the system is then said
to be isolated), ii. there are no other internal forces but gravitational interactions, and
iii. the bodies in play are all assimilated to massive points.

It was this generalized indetermination that fostered, at the beginning of the 18-th
century,3 the development of a new science focused on seeking approximate solu-
tions to systems of differential equations such as (1.2). The whole history of celestial
mechanics, enlightened with extraordinary cultural achievements and enhanced by
spectacular successes, developed around the search for approximatemethods to over-
come the obstacle of having just one exact solution: that of the so-called two-body
problem that we consider in detail in the next chapter. Before getting to the heart of
the matter, a comment on the simplifications listed above is in order.

1 When the number N of bodies becomes large, as it is the case of the stars in a cluster or in a
galaxy, celestial mechanics turns into stellar dynamics. The bodies lose their identities and, in some
applications, systems are idealized by continuous media; cf. [1].
2 Strong gravitational fields require the theory of general relativity.
3 The unsolvability of the N >2 problem had been only guessed until the beginning of the 20-th
century, when it was demonstrated by Bruns and Poincaré; see p. 7.
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2 1 About the N -Body Problem

Fig. 1.1 Cartoon for the spin-orbit resonance of Mercury. The planet is sketched as an ellipse to
mark the direction of the long axis of its figure. The two colors are used to visualize the effect
of diurnal rotation along the elongated (elliptical) orbit. It is apparent that, after one complete
revolution (staring from A and moving counterclockwise), at perihelion the planet, whose diurnal
angular velocity is 3/2 the orbital velocity, alternately shows to the Sun one of the two opposite
faces, thus keeping its long axis always aligned with the center of force when the distance is at a
minimum. In this way the torque is also minimal

Bodies considered by celestial mechanics – as small as a Sputnik or as large as a
star or a galactic nucleus – are often idealized bymassive dimensionlessmathematical
entities. The introduction of massive points is justified by the known property of the
center of mass: any motion, of both a continuous body and a system of N particles,
can be split into (1) themotion of the barycenter, treated as a physical point containing
the entire mass, and (2) the motion of the finite body (or of the N particles) about the
barycenter. Dimensionless points allow us to ignore the complications introduced by
a motion with respect to the center of mass and no longer require us to specify either
the nature or the geometry or the status of the bodies involved. Thus, interactions
that are not purely mechanical can be ignored (for instance, exchanges between
mechanical and internal energies).4 Moreover, the potential of a massive point has a
much simpler and better tractable analytic expression than a finite body (cf. Chap. 5),
at least for distances comparable to the dimensions of the body itself5; its expression
is identical to the external potential of a finite body with spherically symmetric
density.

4 Provided that the sizes of the bodies are small compared with the distances among macroscopic
entities.
5 As the distances increases, the potential of a body tends always to that of a massive point of equal
mass, no matter how complicate its shape is.
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Fig. 1.2 Cartoon for the
spin-orbit resonance of
Venus. The planet is coded
as in the previous figure. It is
apparent that the period of
the diurnal rotation of Venus
is the same as the time
interval �t between two
conjunctions, where:
1

�t
= 1

P♀ − 1

P♁ , and

P♀ = 224.7 d and
P♁ = 365.25 d are the
periods of revolution of
Venus and Earth
respectively. The reader can
verify that 5 × �t � 8 × P♁

We want to stress that here the term isolation means just the absence of external
forces. In other words, there is no conceptual conflict with the Mach principle.6 We
also ignore all internal forces other than gravitational. This latter assumption is not
always realistic. Consider, for instance, the consequences of the exchange between
mechanical and thermal energies which is the basis of innumerable evolutionary
phenomena in theSolar System.Aclassic example is the spin-orbit resonance causing
theMoon to show (on average)7 the same face to the Earth (Prot = Prev). Others such
examples are those ofMercury (Fig. 1.1), which completes three rotations in the time
of two revolutions, and of Venus (Fig. 1.2), which shows always the same face to
the Earth in the lower conjunction, when the planet is aligned with the Earth and the
Sun and it is situated between them.

In the following of this chapter, we analyze the general properties of an isolated,
self-gravitating system of N massive points, leaving the detailed description of some
particular cases to Chaps. 2 and 3.

6 The principle or conjecture of Ernst Mach (1838–1916) originates from the following question:
if every motion is relative, how does one measure inertia in an isolated system? Given an isolated
system of two massive points subject to gravitational forces, an external inertial reference system
is needed to set the dynamical condition for the gravitational equilibrium.
7 A small lunar libration allows the terrestrial observer to see up to 59% of the surface of the satellite,
in spite of the tidal locking. The causes are the ellipticity of the orbit, the change of view point
because of the finite size of the Earth (parallax), and a physical oscillation.
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Fig. 1.3 Sketch of a N -body
configuration

1.1 Self-Gravitating Systems of Massive Points

In the frame of an inertial reference system with orthogonal Cartesian8 axes
O[x, y, z], let us consider an isolated mechanical system of N massive, gravita-
tionally interacting point-like bodies Pi (i=1, . . . , N ) of massesmi (Fig. 1.3). Each
point Pi is attracted by the remaining (N − 1) points Pj (1 ≤ j �= i ≤ N ), each

of which exerts on Pi a force f i j directed as the vector9
−−→
Pi Pj = ri j = r j − ri (Pi

is pulled by Pj ), with an intensity directly proportional to the mass product and
inversely to the square of the distance between Pi and Pj (cf. Chap. 5):

fi j = G
mim j

|−−→Pi Pj |2
−−→
Pi Pj

|−−→Pi Pj |
= G

mim j

r3i j
ri j (i �= j = 1, . . . , N ). (1.1)

According to the third law of dynamics, it must be fi j = −f j i . The application of
the second law assures that the acceleration of Pi has to balance the resultant of the
forces (1.1):

mi
d2ri
dt2

= G
N∑

j �=i=1

mim j

r3i j
ri j (i �= j = 1, . . . , N ). (1.2)

The system of the N vector equations (1.2) contains all the dynamical information
which can be provided to describe the motion of the set of points Pi . It is equivalent
to a system of 3N second order scalar differential equations:

8 It may be interesting to recall that the first use of geometric coordinates was by the Catholic
bishop Nicholas of Oresme (1323–1382), a polymath active in Paris. The French mathematician
and philosopher René Descartes, latinized in Renatus Cartesius (1596–1650), took up the studies
of Oresme for his work on the fusion of algebra with Euclidean geometry.
9 Vector comes from the Latin word for ‘carrier’, since

−−→
Pi Pj tries to carry the point Pi to Pj .
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2xi
dt2

= G
N∑

j �=i=1

m j

r3i j
(x j − xi )

d2yi
dt2

= G
N∑

j �=i=1

m j

r3i j
(y j − yi ) (i �= j = 1, . . . , N ),

d2zi
dt2

= G
N∑

j �=i=1

m j

r3i j
(z j − zi )

(1.3)

where the distance |−−→Pi Pj | is:

ri j = r ji =
[
(x j − xi )

2 + (y j − yi )
2 + (z j − zi )

2
]1/2

. (1.4)

Each equation of the system (1.3) can be transformed in a pair of differential
equations of the first order by setting: Xi = ẋi , Yi = ẏi , and Zi = żi . In this way the
system (1.3) is replaced by another set of 6N first order scalar differential equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xi = ẋi

Ẋi = G
N∑

j �=i=1

m j

r3i j
(x j − xi )

Yi = ẏi

Ẏi = G
N∑

j �=i=1

m j

r3i j
(y j − yi )

Zi = żi

Żi = G
N∑

j �=i=1

m j

r3i j
(z j − zi )

(i �= j = 1, . . . , N ). (1.5)

For a generalization of this transformation and of what follows in this section, see
Sect. 4.2.

The search for general solutions of the system (1.3) is one of the major steps in
the history of celestial mechanics, and is the pivot around which much of the activity
of physicists and mathematicians from the 18-th century to the first half of the 20-th
century has revolved.

We can perhaps argue that, if the system (1.3) were easy to solve for any value
of N (or at least for N large enough), celestial mechanics would have had difficulty
acquiring its independence from the other physical, mathematical, and astronom-
ical disciplines. In turn, an important stimulus for building fundamental tools of
mathematical analysis and computation would have been lost.
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Let us now clarify what we mean with general solution of the system (1.3). The
Cauchy10-Lipschitz11 theorem ensures the existence and uniqueness of the solutions
for the systems (1.3) or (1.5) only in the neighborhood of a regular point.12 Therefore,
with the help of analytic or numeric methods, it is always possible, although not
necessarily easy, to find a solution associated with particular initial conditions, and
extend it to an arbitrarily large (but still finite) time interval. We must proceed as
nature does. At each epoch t , we search for the infinitesimal displacement relative
to each point Pi as a consequence of the particular configuration of positions and
velocities assumed at that time by the other particles, iterating the process over a
convenient time interval. When the tools of mathematical analysis fail to provide us
with a solution, we can resort to numerical integration.

It should be well understood, though, that the direct solution applies only to
problems with explicit initial conditions: precisely what happens in nature, where
only specific problems are tackled. The direct approach does not provide the general
solution we are interested in. It does not inform us, for instance, about the variations
that the dynamic configuration of the system undergoes because of minor changes in
the initial conditions. Moreover, it is a poor and expensive surrogate to an analytical
criterion which, on the ground of the knowledge of the initial conditions, tells us
whether a given set of bodies forms a bound system rather than one where the
mutual distances grow indefinitely as the motion progresses.

The general solution of the system (1.3) is a set of 3N pairs of independent
functions,13 one for each coordinate of position and velocity:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xi = xi (t; a1, a2, . . . , a6N )

ẋi = ẋi (t; a1, a2, . . . , a6N )

yi = yi (t; a1, a2, . . . , a6N )

ẏi = ẏi (t; a1, a2, . . . , a6N )

zi = zi (t; a1, a2, . . . , a6N )

żi = żi (t; a1, a2, . . . , a6N )

(i = 1, . . . , N ) , (1.6)

10 Augustin-Louis Cauchy (1789–1857); French mathematician and engineer, one of the fathers of
mathematical analysis. Very prolific writer, he was among the first to state and rigorously prove
theorems of calculus using the concepts of limit and continuity. He also founded complex analysis.
11 Rudolph Lipschitz (1832–1903); German mathematician who contributed to mathematical anal-
ysis, differential geometry, and classical mechanics.
12 Cauchy-Lipschitz or the existence and uniqueness theorem ensures that a systemof n linear differ-
ential equations of the first order, rewritten in compact terms as u̇ = f(t,u), where u = (u1, . . . , un)
and f = ( f1, . . . , fn), associated with proper initial conditions at an epoch t0, u(t0) = u0 (this set
of equations is referred to as Cauchy problem), have only one solution in the neighborhood of t0.
The function f must be defined in a neighborhood of the point (t0,u0), where it must be at least
continuous and satisfy Lipschitz condition with respect to u. Systems of the type ü = f(t,u), with
a degree higher than the first, can be transformed into systems of first order equations through the
simple position v = u̇, thus re-entering in the case described above.
13 Possible dependence inside the solutionswould indicate the existence of constraints (cf. Sect. 4.2),
which are not considered in the formulation of the problem given in this section.
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which satisfy the system identically for any value of the time t . They contain 6N
integration constants ai , as many as the first order equations (1.5), that link the
solutions to the set of initial conditions.

The independence of the functions (1.6) is also the condition for the inversion
of the system, that is for the existence of 6N constant functions of coordinates,
velocities, and time, independent of each other:

ai = ai (x1, y1, z1, . . . , xN , yN , zN , ẋ1, ẏ1, ż1, . . . , ẋN , ẏN , żN , t), (1.7)

that are called first integrals or integrals of motion. The existence of 6N first inte-
grals for the system of equations (1.3), i.e., of 6N constant functions of coordinates
and velocity components, is a necessary condition for the existence of the general
solution. But, if the system (1.7) is reversed, one obtains again (1.6), that is the gen-
eral solution of (1.3). So, the existence of the 6N first integrals is also a sufficient
condition for the existence of the general solution. This means that the search for
solutions of the (1.3) can be completely replaced by the search for 6N independent
first integrals.

1.2 The Fundamental First Integrals

We prove here that, for any N ≥ 2, the system of equations (1.3) has always at least
10 first (scalar) integrals. Six of them are related to the motion of the center of mass,
three to the projections of the total angular momentum on the coordinate axes, and
the last one to the total energy. We will see (cf. Chap. 2) that, if N = 2, the search for
the remaining integral of motion is reduced to simple quadratures. The difficulties
arise when N >2.

There are theorems due to Bruns14 and Poincaré,15 which prove that, under
selected coordinate systems, no further first integrals exist either in the form of
algebraic and uniformly transcendent functions [2, 3]. These theorems do not solve
completely the problem as they lack exploring all the possible types of integrals
and coordinate systems. However, no any method capable of providing the complete
solution of the so-called N -body problem is known to date when N > 2. Actually,
between 1906 and 1909 the Finnish mathematician and astronomer Karl Frithiof
Sundman (1873–1949) produced an exact analytical solution of the three-body prob-
lem, developing an infinite convergent series of powers of t1/3; but the mathematical
formulation reaches a level of complexity that makes the solution unusable. The

14 Ernst Heinrich Bruns (1848–1919); German mathematician, astronomer, and geodesist.
15 Jules Henri Poincaré (1854–1912): French mathematician and physicist, one of the greatest and
most influential scientists of his time, active in many fields, from pure to applied mathematics,
frommathematical physics to celestial mechanics, where he was the first to discover a deterministic
chaotic system, setting the foundations of themodern theory of chaos.His researches on the principle
of relativity and theLorentz transformations havebeen fundamental for the formulationof the special
theory of relativity.
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convergence of the series is so slow that nearly 107 terms are required to return an
astronomically acceptable accuracy.

We shall see in Chap. 4 how to get around the obstacle of the unsolvability of
the N -body problem though approximate methods based on the knowledge of the
exact solution of the two-body problem, which we explore in the next chapter. Here
we briefly consider the simplest case of N = 1. If the only body in play is isolate
(infinitely far from other bodies and not subject to external forces16), we say that
the reference system in which it remains stationary (v = 0) or moves uniformly in
a straight line (v = constant vector) is inertial. This statement is nothing but the
principle of inertia or first principle of dynamics. Formulated by Galileo Galilei17

following his studies on the motion of bodies on inclined and horizontal planes, this
principle opposed the erroneous Aristotelian theory according to which a moving
body tends to slow down and stop unless it is supported by an external force. Clearly,
the opinion ofAristotle is biased by ignorance of friction. Everyday experience seems
to support the philosopher of Stagira, but in an ideal experiment where friction is
negligible (similar to that made by Galilei himself), a body which is not subject to
forces continues in its motion indefinitely and with constant velocity.

1.2.1 The Conservation of Momentum

Let us now return to a N -body system. Adding up all the equations of (1.3) related
to the same axis, three identities are obtained:

N∑

i=1

mi ẍi = 0,

N∑

i=1

mi ÿi = 0, (1.8a)

N∑

i=1

mi z̈i = 0.

To be convinced, just apply the third principle of the dynamics to each pair of bodies
and sum up all the pairs. By integrating a first time the (1.8a), it is:

16 There are no internal forces since we deal with a massive point.
17 The inertia principle has been anticipated in a qualitative form inDanteAlighieri’sDivineComedy
(Inf.XVII, vv. 115-117), where the Italian poet describes the descent of the steep cliff from the 7-th
to the 8-th circle riding the monster Geryon without feeling the movement (Fig. 1.4: Onward he
goeth, swimming slowly, slowly; / Wheels and descends, but I perceive it only / By wind upon my
face and from below.
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Fig. 1.4 Geryon flies
carrying Dante and Virgil on
his back; illustration by
Gustave Doré

N∑

i=1

mi ẋi = px ,

N∑

i=1

mi ẏi = py, (1.8b)

N∑

i=1

mi żi = pz,

where p = (px , py, pz) has the dimensions of a momentum. By integrating once
more, we obtain 6 first integrals:
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N∑

i=1

mi xi = px t + qx ,

N∑

i=1

mi yi = pyt + qy, (1.8c)

N∑

i=1

mi zi = pzt + qz .

By introducing the coordinates of the barycenter,18 (xc, yc, zc), it is:

N∑

i=1

mi xi = xc

N∑

i=1

mi = xc M ⇒ xc = px t + qx
M

,

N∑

i=1

mi yi = yc

N∑

i=1

mi = yc M ⇒ yc = py t + qy
M

,

N∑

i=1

mi zi = zc

N∑

i=1

mi = zc M ⇒ zc = pz t + qz
M

,

(1.9)

where M =
N∑

i=1

mi is the total mass of the system. It is apparent that the three sets of

(1.8a), (1.8b), and (1.8c) represent the application to an isolated mechanical system
of the theorem on the motion of the mass center: in an inertial reference frame this
fictitious point moves with rectilinear and uniform motion with a time law of motion
given by (1.9).

The existence of the 6 first integrals (px , py, pz, qx , qy, qz), corresponding to the
motion of the center of gravity, can be inferred more elegantly from the properties
of the potential function (see also Chap. 5):

U = G
N∑

i=1

N∑

j>i

mim j

ri j
, (1.10a)

or:

U = 1

2
G

N∑

i=1

N∑

j �=i=1

mim j

ri j
. (1.10b)

18 Given a generic reference system centered on O , the barycenter or center of mass B of a system of

N points Pi of mass mi is the dynamical point satisfying the equation:
N∑

i=1

mi
−−→
OPi = −→

OB
N∑

i=1

mi , or

N∑

i=1

mi
−−→
BPi = 0 (for a continuous body replace the summationwith an integral). The namebarycenter

comes from the combination of two words of ancient Greek for heavy and center.
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It is easily verified that:

mi ẍi = ∂U

∂xi
,

mi ÿi = ∂U

∂yi
, (1.11)

mi z̈i = ∂U

∂zi
.

For instance, recalling (1.3):

∂U

∂xi
= G mi

∂

∂xi

N∑

j �=i=1

m j

ri j
= G mi

N∑

j �=i=1

m j

r3i j
(x j − xi ) = mi ẍi . (1.12)

The potential U tends to zero only when all the distances ri j between the particles
tend to infinity, i.e., when the system becomes completely disconnected. Conversely,
U → ∞ when at least one of the mutual distances tends to zero, i.e., at least two
particles collide.19

The potential function U depends on the coordinates of the point-like bodies
Pi , but only through special combinations of these, corresponding to the mutual
distances between pairs of bodies. Therefore U has to be invariant to translations of
the reference system due to the homogeneity of space.20 This implies that:

N∑

i=1

∂U

∂xi
=

N∑

i=1

∂U

∂yi
=

N∑

i=1

∂U

∂zi
= 0. (1.13)

In fact, let it be for example:

x ′
i = xi + x◦ (i = 1, . . . , N ), (1.14)

with x◦ = constant. The partial derivative of U with respect to x◦ is:

∂U

∂x◦
=

N∑

i=1

∂U

∂x ′
i

∂x ′
i

∂x◦
=

N∑

i=1

∂U

∂x ′
i

, (1.15)

19 This condition is purely formal in that, at small distances, it is no longer possible to ignore the
physical nature of the massive points and therefore the existence of a Schwarzschild radius which
assigns them a sort of finite dimension (see p. 19). The singularity can also intervene in the numerical
calculation and must be properly treated.
20 Homogeneity of space (from the classical Greek ‘same’ and ‘type’) means that no point is special,
so the same basic laws of physics govern all of the space.
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as ∂x ′
i/∂x◦ = 1. But it must vanish since U is independent of x◦. Eliminating the

quotes from (1.15), we obtain the first of the (1.13). Finally, using (1.11), we find
again the (1.8a).

1.2.2 The Conservation of Angular Momentum

We now prove the existence of three first integrals connected to components of the
total angularmomentumby resorting to another characteristic of the potential (1.10a).
This function is invariant to rotations of the reference system since classical space
is not only homogeneous but also isotropic.21 Consider, as an example, a rotation
of the reference system by an angle φ around the z axis, set by the transformation
equations:

x ′
i = xi cosφ − yi sin φ

y′
i = xi sin φ + yi cosφ (i = 1, . . . , N ). (1.16)

z′
i = zi

If the angle φ is small, we have sin φ ∼ φ, cosφ ∼ 1, and, in the differential form:

dxi = x ′
i − xi = −yidφ,

dyi = y′
i − yi = xidφ, (1.17)

dzi = 0.

Being invariant to rotations, U does not depend on the coordinates but on the mutual
distances only; thus, using (1.17), the total differential is:

dU =
N∑

i=1

(
∂U

∂xi
dxi + ∂U

∂yi
dyi + ∂U

∂zi
dzi

)
=

=
N∑

i=1

(
− ∂U

∂xi
yidφ + ∂U

∂yi
xidφ

)
=

= dφ

N∑

i=1

(
− ∂U

∂xi
yi + ∂U

∂yi
xi

)
= 0. (1.18)

By repeating the exercise for rotations about x and y and combining the results with
the (1.11), we obtain the system:

21 Isotropy of space (from the classical Greek ‘equal’ and ‘turn’) means that no direction is special.
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N∑

i=1

mi

(
yi
d2zi
dt2

− zi
d2yi
dt2

)
= 0,

N∑

i=1

mi

(
zi
d2xi
dt2

− xi
d2zi
dt2

)
= 0, (1.19)

N∑

i=1

mi

(
xi
d2yi
dt2

− yi
d2xi
dt2

)
= 0,

which integrates in:

N∑

i=1

mi

(
yi
dzi
dt

− zi
dyi
dt

)
= hx ,

N∑

i=1

mi

(
zi
dxi
dt

− xi
dzi
dt

)
= hy, (1.20)

N∑

i=1

mi

(
xi
dyi
dt

− yi
dxi
dt

)
= hz .

The three relations (1.20) are first integrals. Their left terms express the projections
of the total angular momentum h = (hx , hy, hz) on each of the coordinated axes. It

is convenient to rewrite (1.20) in the vector form:
N∑

i=1

ri × mi ṙi = h. The constancy

of the individual components requires the total angular momentum vector to be also
constant and hence the existence of a single privileged plane, called invariable plane
by Laplace.22 Since it contains the center of gravity and is orthogonal to the total
moment h, its position is independent of time.

1.2.3 The Conservation of Energy

The last of the 10 first integrals listed above is a consequence of the fact that the
gravitational potential does not depend explicitly on time. Multiplying the (1.11) by

22 French mathematician, physicist, and astronomer, Pierre Simon de Laplace (1749–1827) gave a
great contribution to the establishment of determinism and, through his famous Treatise on Celestial
Mechanics (five volumes published between 1799 and 1825), to the transformation of Newtonian
mechanics from a geometric science to an analytical discipline. He was the one who coined the
term ‘celestial mechanics’ for that part of classical mechanics that applies to the motions of celestial
objects. He was also one of the founders of the probability theory. Made count by the Napoleon,
of whom he was also a minister of the interior (quickly dismissed as “he brought the spirit of the
infinitely small into the government”), after the Restoration he received the title of marquis by the
Bourbons; a genius in science and in politics a man for all seasons.
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ẋi , ẏi , and żi respectively, then summing up for the index i , and finally adding all the
results:

N∑

i=1

mi

(
d2xi
dt2

dxi
dt

+ d2yi
dt2

dyi
dt

+ d2zi
dt2

dzi
dt

)
= dU

dt
, (1.21)

or:
d

dt

(
N∑

i=1

1

2
mi

[(
dxi
dt

)2

+
(
dyi
dt

)2

+
(
dzi
dt

)2
])

= dU

dt
. (1.22)

By integrating over time, we obtain the 10-th first integral:

T = U + E◦, (1.23)

where:

T = 1

2

N∑

i=1

mi

[(
dxi
dt

)2

+
(
dyi
dt

)2

+
(
dzi
dt

)2
]

, (1.24)

is the total kinetic energy,23 evaluated with respect to the adopted inertial reference
system, and the integration constant E◦ = T − U is the total energy of the system;
in fact, −U is the total potential energy. This statement is verified by calculating
the work done by the mutual attractive force between two bodies Pi and Pj for a
displacement which changes the mutual distance from r◦

i j into ri j < r◦
i j :

Wi j = −G mim j

∫ ri j

r◦
i j

dr ′
i j

r ′2
i j

= G mim j

(
1

ri j
− 1

r◦
i j

)
. (1.25)

By assuming that the two bodies are originally at an infinite distance (r◦
i j → +∞),

the (1.25) becomes24:

Wi j = G
mim j

ri j
, (1.26)

23 Some philosophers of antiquity, such as Thales of Miletus, had already sensed the concept of
energy conservation. The first to give it a mathematical formulation was Leibniz. He noted that, in
a dynamical system, the sum of the products of the mass of each particle times the squared velocity,∑

i miv
2
i , is conserved, and he named this quantity vis viva, from the Latin ‘living force’, as opposed

to vis mortua, ‘dead force’, which is our inertia. This principle of conservation of the kinetic energy,
also called theoremof the ‘living forces’, had a coeval rival in another fundamental physical principle
due to the French natural philosopher Descartes and to Newton: the conservation of the momentum,
i.e., of the vector quantity

∑
i mivi . Later, the two principles became complementary. With the

advent of thermodynamics, in the 18-th century, it was understood that the kinetic energy is not
conserved as such, since it is partly converted into heat.
24 Notice the sign in (1.25): the work done by gravity on the system in going from infinity to a finite
distance is positive because the field is attractive.
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which provides the work needed for the pair of bodies to go from infinity to the
mutual distance ri j . By the definition of potential (1.10b), for a N -body system it is:

U = 1

2

N∑

i=1

N∑

j=1

Wi j , (i �= j). (1.27)

For instance, the potential energy of the Sun tells us how much gravitational energy
the star was able to extract from its own self-gravity since the time it started its
collapse as a protostar. This value is far lower than needed to fuel the Sun during its
lifetime of 4.6 billion years (an overall budget that we deduce by assuming that the
Solar luminosity has been constant over time),25 and induces to look for other, more
efficient sources (nuclear energy). Note however that gravitational energy is still an
important resource for stars, which they draw on in the protostellar phase (before the
ignition of the nuclear source) and in all those phases in which nuclear sources are
insufficient or even extinct.

The expression (1.23) shows that the total energy,E◦, of an isolated self-gravitating
system of N massive points is an undefined constant. In fact, both the kinetic and
the potential energy have arbitrary zero points.

The total kinetic energy consists of the sum of two terms. The first is given by the
motion of the N bodies relative to center of gravity (for this reason we call it specific
kinetic energy); the second by the motion of the center of gravity treated as a point
holding the entire mass M of the system. Indeed, said B the center of gravity, it is:

−−→
OPi = −→

OB + −−→
BPi , and thus, indicating the total mass with M =

N∑

i=1

mi :

25 The gravitational potential energy of a spherically symmetric body of density ρ(r) and radius R

is obtained by integrating the contributions dW = −GMr

r
4πr2ρ dr by the thin spherical layers of

radius 0 ≤ r ≤ R, where Mr = 4π
∫ r

0
ρ r2dr . It is W = −4πG

∫ R

0
Mr ρ rdr , which integrates in

W = −3GM2

5R
if ρ = ρ◦ = const, and M = 4

3
πρ◦R3. From the virial theorem (see Sect. 1.5) we

learn that a gravitational system passing from one equilibrium state to another must turn half of its
available energy into internal kinetic energy. The other half is radiated away. Therefore, from its birth

as a protostar, the Sun has radiated �Er = 3GM2�
10R�

= 1.14 × 1041 J at the expenses of its potential

energy. Since our star shines at a rate of L� = 3.832 × 1026 J s−1, whether this flux rate has been
preserved over time, the gravitational energy has lasted for not more than 2.9 × 1014 s � 107 yr.
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T = 1

2

N∑

i=1

miv
2
i = 1

2

N∑

i=1

mi

(
d
−−→
OPi
dt

)2
= 1

2

N∑

i=1

mi

(
d
−→
OB

dt
+ d

−−→
BPi
dt

)2
=

= 1

2
M

(
d
−→
OB

dt

)2
+ 1

2

N∑

i=1

mi

(
d
−−→
BPi
dt

)2
+ d

−→
OB

dt

N∑

i=1

mi
d
−−→
BPi
dt

=

= 1

2
M

(
d
−→
OB

dt

)2
+ 1

2

N∑

i=1

mi

(
d
−−→
BPi
dt

)2
, (1.28)

since, according to the definition of barycenter, it is
N∑

i=1

mi
d
−−→
BPi
dt

= 0.

The indetermination about T is therefore a consequence of the Galilean equiva-
lence principle of reference systems in relative translatory and uniform motion, and
it is eliminated considering a system of coordinates connected to the center of gravity
of the mechanical system, which is allowed in the absence of external forces.

The indetermination about the potential energy derives formally from the defini-
tion of the scalar potential as a primitive function of a vector force field; integration
involves the introduction of an arbitrary constant that can be fixed only by imposing
some initial conditions. This is exactly what we did by assuming, in (1.26), that the
gravitational potential between two bodies at infinite distance is zero.

In conclusion, lacking proper conventions, it makes little sense to talk of total
energy, although it stays constant. In the followingwe stipulate that, unless otherwise
stated, the total energy is always the specific one, with motions relative to the gravity
center and U = 0 at infinity.

1.3 The N-Body Problem in Barycentric and in Relative
Systems

Consider the motion of the particle Pi in the barycentric reference system. Being ri
the radius vector of Pi , the equation of motion writes as:

d2ri
dt2

= G
N∑

j=1

m j
r j − ri
r3i j

, (i �= j = 1, . . . , N ). (1.29)

From the definition of the barycenter:

N∑

i=1

mi ri = 0, (1.30)

it follows that:
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r1 = − 1

m1

N∑

i=2

miri , (1.31)

where we have isolated the coordinates of one of the masses, arbitrarily choosing
that with the index i = 1 with no loss of generality. By putting in evidence the terms
related to m1 in (1.29), we have:

1

G
r̈i = m1r1

r3i1
− m1ri

r3i1
+

N∑

i=2

m j
r j − ri
r3i j

=

= − 1

r3i1

N∑

j �=i=2

miri − m1ri
r3i1

+
N∑

j �=i=2

m j
r j − ri
r3i j

. (1.32)

If we divide the first sum of (1.32) in two terms with i and j �= i , with simple
manipulations we obtain:

r̈i + G(m1 + mi )
ri
r3i1

= G
N∑

j �=i=2

m j

[
r j − ri
r3i j

− r j
r3i1

]
. (1.33)

The first term on the right side of (1.33) is the sum of the forces exerted on the i-th
mass by all the others of the system. The second term is the sum of the inertial forces
due to the acceleration of the massm1 under the influence of others. The barycentric
reference system is inertial since, in the absence of external forces, the center of
gravity is stationary or moves by a uniform rectilinear motion.

In the event that one of the masses largely exceeds all the others, i.e., when
m1  mi , where the choice of the index for the dominant mass does not invalidate
the generality of the discussion, it may be convenient to place the origin of the system
on it. We will call this system a relative reference system.

Let then assume that P1 coincides with the origin, so that r′
i = −−→

P1Pi is the radius
vector of point Pi . The relations of the new coordinates to the old ones are:

r′
i = ri − r1. (1.34)

Isolating in (1.30) the terms relative to the masses m1 and mi , we write:

m1r1 + miri +
N∑

j �=i=2

m jr j = 0, (1.35)

which, substituted in (1.34) to eliminate r1, gives:
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m1r′
i = (m1 + mi )ri +

N∑

j �=i=2

m jr j . (1.36)

Let us now derive (1.34) twice:

r̈′
i = r̈i − r̈1; (1.37)

using (1.33) for r̈i and (1.29) with i = 1 for r̈1, after some simplifications we obtain
the equation of motion for the relative reference system:

r̈′
i + G(m1 + mi )

r′
i

r ′3
i

= G
N∑

j �=i=2

m j

[
r′

j − r′
i

r ′3
i j

− r′
j

r ′3
j

]
, (1.38)

where r1i = r ′
i = √

(x ′
i )2 + (y′

i )
2 + (z′

i )2. Again, the second term on the left side
of (1.38) is the result of the gravitational influence of m1 on the i-th mass. The first
term on the right side of this equation is the sum of the forces exerted on the i-th
mass by all the others of the system. The second term is the sum of the inertial forces
due to the acceleration of the mass m1 under the influence of others.

Remember that in this case the coordinate system is no longer inertial. This implies
that the first motion integral for the center of mass does not exist. We can rewrite the
(1.38) in the form:

r̈i + G(m1 + mi )
ri
r3i

= Fi , (1.39)

omitting the prime.Whenm1  mi for all i = 2 to N , it happens that Fi � G(m1 +
mi )

ri
r3i

. In this case the N -body problem can be replaced by (N − 1) two-body

problems, as many as the direct interactions of each particle Pi with P1. This is what
we pretend happens in the Solar System, when we consider the motion of each planet
around the Sun using the two-body problem approach (Fi = 0). The gravitational
influence of the other planets obviously remains, but it is only a perturbation. It can
be tackled by the methods illustrated in the following chapters.

1.4 On the Solution of the N-Body Problem

Let us now try to understand why the N -body problem does not admit a general
solution for N ≥ 3. To this end, we must first realize that, due to the properties of
the center of gravity, the actual number of independent bodies is (N − 1). Take any
one of the bodies, for example that with index N , and isolate it in (1.9):
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xN = 1

mN

(
xc M −

N−1∑

i=1

mi xi

)
,

yN = 1

mN

(
yc M −

N−1∑

i=1

mi yi

)
, (1.40)

zN = 1

mN

(
zc M −

N−1∑

i=1

mi zi

)
.

Thecoordinates of PN , and its velocities as they result bydifferentiating the (1.40), are
functions of the coordinates of the other (N − 1) points and of the center of gravity,
which we can assume identically null since the system is isolated. This means that,
in a two-body problem, only one of the two points is independent. If N > 2, the
number of independent bodies increases to (N − 1) ≥ 2 and there are two or more
of them in play. They can exchange energy one with the other by means of collisions
(close approaches), which can be very effective as the gravitational potential diverges
when the distance between two points, ri j , tends to zero. What does it happens
in this case? Just a little difference in the approach trajectory is enough to cause
enormous differences in the subsequent development of the motion. In other words,
the motions in a system with N ≥ 3 bodies for two sets of initial conditions differing
by infinitesimals can, at a given moment, diversify greatly due to a close encounter
between (at least) two of the bodies in play. Therefore, the continuity between initial
conditions and the characteristics of the motion of a system with N ≥ 3 bodies is
not guaranteed. This is the reason why it is normally impossible to find the general
solution to the N -body problem (i.e., a complete set of first integrals), while it is
always possible to search for particular solutions that are sufficiently accurate within
an ample time interval or even analytic solutions to special problems.26 We will
resume this question in Chap. 4.

Before going any further, let us look attentively at the divergence of the potential
of twomassive points as their distance d = r12 reduces.While formally d may tend to
zero, thus allowing any loss of potential energy and an equally unlimited production
of kinetic energy, from a physical point of view d can at most reduce to the sum
of the Schwarzschild27 radii rg of the two massive points, where the gravitational
(Schwarzschild) radius for a mass m is [5]:

26 These considerations form the basis of the chaos theory, i.e., the study of dynamical systems that
exhibit exponential sensitivity to initial conditions [4].
27 Karl Schwarzschild (1873–1916) was a German mathematician, physicist, and astronomer in the
years when general relativity, quantum mechanics, and astrophysics were born. He died young due
to a disease aggravated by the hard living conditions at the Russian front during the FirstWorldWar.
His son Martin, American citizen, became a famous theoretical astrophysicists. The gravitational
radius is named after him since it is the spherically symmetric solution of Einstein’s equations
that he found in 1916. We will apply his solution – Schwarzschild’s metric (4.370) – to find the
relativistic advance of Mercury perihelion in Sect. 4.14.
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rg = 2Gm

c2
= 1.485 × 10−27 m

1 kg
m = 2.95 ×

(
m

M�

)
km, (1.41)

with c the speed of light and M� = 1.989 × 1033 g the mass of the Sun. For one
Solar mass, rg � 3 km. It is easy to verify that under these conditions the maximum
potential energy removable from a pair of points with equal mass m is of the order
of mc2. From (1.26):

W1,2 = �U = G
m1m2

r12
= G

m2

rg
= mc2

2
. (1.42)

In the so-called N -body simulations, applied to study the evolution of sets of many
points (up to N � 109 and beyond28) by solving numerically the system of differ-
ential equations of motion, the divergence of the potential as ri j tends to zero is
controlled by an ad hoc modification of the expression of the potential of each mas-
sive point. A minimum spatial scale, ε, called softening length, is introduced to force
the regularization [6]:

U = G
N∑

i=1

N∑

j �=i=1

mim j√
r2i j + ε2

; (1.43)

so that the force acting on each particle Pi :

fi = ∇
⎛

⎝
N∑

j �=i=1

mim j√
r2i j + ε2

⎞

⎠ = mi

N∑

j �=i=1

m j
(
r2i j + ε2

)3/2 ri j , (1.44)

does not diverge for small values of ri j .Most of the spectacular simulations of galaxies
encounters downloadable from the web have been made with this ‘gimmick’.

1.5 The Virial Theorem: Classical Formulation

This paragraph is devoted to a statistical relation between the potential and the kinetic
energies of a dynamical system. Born within the thermodynamics, it has found useful
applications in several branches of physics, from astrophysics to classical mechanics.

Given a system of N massive points and an inertial reference frame, consider the
explicit function of time:

G(t) =
N∑

i=1

pi · ri , (1.45)

28 See, for instance, https://www.illustris-project.org, the site of the cosmological simulation project
named Illustris.

https://www.illustris-project.org
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where pi = mi ṙi is the momentum of the i-th point. The function G(t) has the
dimensions of an action. Apart from an arbitrary constant of integration, its primitive
is the moment of inertia of the system relative to the origin of the reference system:

∫ t

G(t) dt = 1

2

N∑

i=1

mi ri · ri . (1.46)

Take now the time derivative of G:

dG(t)

dt
=

N∑

i=1

pi · ṙi +
N∑

i=1

ṗi · ri . (1.47)

The first term at the right side equals twice the total kinetic energy, T = 1

2

N∑

i=1

mi ṙ2i .

By denoting with fi the total force acting on the i-th point, the second term can be
written as:

N∑

i=1

ṗi · ri =
N∑

i=1

fi · ri . (1.48)

If the force field depends on the potential U, then:

N∑

i=1

fi · ri =
N∑

i=1

∇i U · ri , (1.49)

where the differential operator (cf. Appendix C) is calculated with reference to the
point Pi . Finally, if the potentialU is a homogeneous function of degree k, the Euler29

theorem (see p. 228) ensures that:

N∑

i=1

∇i U · ri = k U = −kW, (1.50)

where W = −U is the total potential energy. In conclusion, the (1.47) reduces to:

dG(t)

dt
= 2 T − kW. (1.51)

29 A student of Johann Bernoulli, the Swiss Leonhard Euler (1707–1783) is considered the most
important mathematician of the Enlightenment. Extraordinarily prolific, he made fundamental con-
tributions to infinitesimal analysis, special functions, rational and celestial mechanics, and to the
theory of numbers. His name is linked to an impressive number of theorems and mathematical
objects. He spent 14 year in Saint Petersburg and the following 25 years in Berlin. In 1766 he
returned to Russia where he stayed up to his death.
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Suppose now that the system is subject to a periodical motion with period P . In this
case the value of dG/dt averaged over one period:

1

P

∫ t+P

t

dG(t)

dt
dt = 1

P

[
G(t + P) − G(t)

]
, (1.52)

is null. Thus, the mean value at the right-hand side of (1.51) is also null:

〈2 T − kW〉 = 0. (1.53)

This important relation, called classical Virial theorem or Virial of Clausius,30 works
even under hypotheses larger than the simple periodicity of the system. Actually, the
average value of (1.52) is null as long as the system is limited in the phase space
(|ri | ≤ r◦

i , and |pi | ≤ p◦
i , at any time) and P , which now has just the meaning of a

time interval, is large enough (formally, when it tends to infinity).
It can also be shown that the condition (1.53) is satisfied even in the presence of

dissipative forces, provided that they do not cancel the motion in the time interval in
which the average value is calculated.

For elastic forces (k = 2), theVirial (1.53) returns thewell-known property 〈T 〉 =
〈W〉, telling us, for example, that the kinetic energy of a simple pendulum is equal,
on average, to the potential energy. For the gravitational potential, k = −1, and then:

〈2 T + W〉 = 0, (1.54)

with the usual convention W(∞) = 0.
The Virial theorem can be generalized to include the contribution of electric and

magnetic fields and becomes useful for analyzing the effect of magnetic fields in
plasmas. In this case, its form becomes more complex than (1.53). For the tensor
version of this theorem, fundamental in stellar dynamics, see the book of Binney and
Tremaine [1].
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Chapter 2
On the Two-Body Problem

Albert Einstein, address to
Prussian Academy of Sciences (1921)

As far as laws of mathematics refer to reality, they are not
certain; and as far as they are certain, they do not refer to reality.

The modern formulation of the two-body problem appeared for the first time in
the third and last book of the Philosophiae Naturalis Principia Mathematica, the
treaty that Isaac Newton published owing to a decisive stimulus and material help by
Edmund Halley: unanimously considered one of the most important contributions
to the scientific thought. A physical theory and an interaction model were needed
to interpret the phenomena occurring on Earth and on the sky. Inspired by Galilei,
Newton postulated that the laws of mechanics are universal (they hold below and
above the sphere of the Moon, to use the Aristotelian scheme of the world) and that
the same force causing the mythical apple fall on the Earth keeps the Moon tied to
its primary.1

In this sense, Newton’s law of gravitational force, the first of the four fundamental
interactions of physics to be discovered and modeled mathematically,2 gained the
character of a universal law: an attribute that marks another important victory over

1 From a letter that in mature age Newton wrote, perhaps to the Huguenot scholar Pierre Des
Maizeaux, to tell of his discoveries made in the years of the plague 1665–1666: “I deduced that the
forces which keep the planets in their orbits must be reciprocally as the squares of their distances
from the centers about which they revolve; and thereby compared the force requisite to keep the
Moon in her orbit with the force of gravity at the surface of the Earth; and found them answer
pretty nearly”. As for the myth of the apple, it was invented by Voltaire, nom de plum of the French
philosopher François-Marie Arouet (1694–1778).
2 In decreasing order of strength there are the strong nuclear forces, the weak interactions, the
electromagnetic forces, and gravity.
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the Aristotelian dichotomy between terrestrial and celestial worlds, each with the its
own ϕυσικη′ (physics). It is worth remembering how this law of force postulates the
existence of the gravitational mass as a characteristic property of a body, enduring
as long as the body keeps its integrity: a concept that is dramatically updated in
Einstein’s theory of relativity.

The postulated existence of a force directly proportional to the mass is also the
theoretical key to close once for ever the millennial cosmological issue about who is
at the center of the world (intended as just the Solar System): either the Earth or the
Sun. This role obviously belongs to the Sun because its mass is far larger than the
Earth’s.

To tackle the problem of the motion of two bodies under the mutual attractive
force generated by their gravitational masses, a complete mechanical theory was
also needed. Newton exposed it in the first two books of the Principia. Here, in addi-
tion to introducing the inertial mass as a degree of resistance of a body to dynamical
changes, quantified by the ratio between the applied force and the acceleration, New-
ton postulated the existence of a Euclidean absolute space and an absolute time, each
one independent of the other (at variance with Descartes’ and Leibniz’s thoughts),
and measurable. These hypotheses3 survived for over two centuries, during which
Newton’s mechanics collected extraordinary and countless successes (besides the
scientific applications, it was the drive to the industrial revolutions and to the birth of
modern technological society), up to the critical revision made by Einstein with the
special (in 1905) and the general (in 1915) theory of relativity, with the unification
of space and time and the equivalence principle between gravity and inertia.

Newton’s gravitational theory gained readily the attention of the scientific com-
munity as it was able to reproduce all the three planetary laws found empirically by
Johannes Kepler from the year 1609 to 1619. It also provided a convincing expla-
nation of the tides: phenomena that even Galileo Galilei had unsuccessfully tried
to interpret using inertia only. Nonetheless, the idea of instant actions at distance
implied by the gravitational force was hard to digest. Newton himself found uncom-

3 See this translation from Latin to English of the Scholium, the reasoned summary Newton made of
his overall theory:“Hitherto I have laid down the definitions of such words as are less known, and
explained the sense in which I would have them to be understood in the following discourse. I do
not define time, space, place, and motion, as being well known to all. Only I must observe, that the
common people conceive those quantities under no other notions but from the relation they bear to
sensible objects. And thence arise certain prejudices, for the removing of which it will be convenient
to distinguish them into absolute and relative, true and apparent, mathematical and common”.
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fortable to accept it,4 though he had shown that the instantaneousness of the action
was implied by the constancy of the angular momentum required by Kepler’s laws.

In astronomy, the Newtonian theory reached the top of the success in themiddle of
the 19th century when Le Verrier predicted the existence of a new planet, then named
Neptune, in order to account for the perturbations exhibited by Uranus, remaining
strictly within the Newtonian orthodoxy. Discovered in 1782 by the German-born
British musician and astronomer William Herschel (1738–1822), Uranus showed
a projected velocity at variance with the predictions made by applying celestial
mechanics methods to the system of the main bodies of the Solar System. Le Verrier
and, independently, the English student John Couch Adams (1819–1892), asked
themselves the following question: could these inconsistencies between theory and
observations be due to an unknown planet perturbing the orbit of Uranus? If so,
where should this ghost presence be and with which mass in order to produce the
wanted effect? A very difficult enterprise indeed for the time, where all calculations
had to be done by hand. The iterated solution worked out by Le Verrier provided a
position of the assumed perturber with a small error box. Pointing there the refractor
of the Berlin Observatory, Johann Gottfried Galle (1821–1910) and Heinrich Louis
d’Arrest (1822–1875) readily discovered Neptune. It was the year 1846.

Note that the explanation of Uranus’ perturbations could have been also sought
in a failure, at large scales, of the Newtonian formulation of gravity and/or law of
inertia.5

A similar problem arose in the second half of the 20th century with the discovery
of the so-called flat rotation curves of spiral galaxies which implied the presence of a
force additional to that generated by the distribution of luminousmatter (in turn traced
by the light density distribution under the assumption of a constant mass-to-light
ratio). The canonical solution to this conundrum has lead to postulate the existence
of a cosmic Dark Matter, a new and dominant material ingredient, whose particle
has not yet been detected though. It has also stimulated attempts of falsifying the

4 From a letter that Newton wrote to Rev. Richard Bentley (1662-1742) in 1692/93 in response to
pressing requests for clarification on the deeper meanings of the theory set forth in the last book
of Principia: “It is inconceivable that inanimate brute matter should, without the mediation of
something else which is not material, operate upon and affect other matter without mutual contact,
as it must be, if gravitation in the sense of Epicurus, be essential and inherent in it. And this is one
reason why I desired you would not ascribe innate gravity to me. That gravity should be innate,
inherent, and essential to matter, so that one body may act upon another at a distance through a
vacuum, without the mediation of anything else, by and through which their action and force may
be conveyed from one to another, is to me so great an absurdity that I believe no man who has in
philosophical matters a competent faculty of thinking can ever fall into it. Gravity must be caused
by an agent acting constantly according to certain laws; but whether this agent be material or
immaterial, I have left open to the consideration of my readers”.
5 A priori, there were other ways to justify the discrepancy. For instance, one might have called for
a revision of either the Newton’s second law or the behavior of the gravitational force in a ‘weaker
field’, as it is the gravitational field of the Sun in the (then unexplored) outskirts of the Solar System.
Actually, the falsification of the theory, rather than the existence of a new planet as suspected by Le
Verrier, was Einstein’s solution to the difficulties met by classical celestial mechanics to account
for the total value of Mercury’s perihelion precession; cf. Sect. 4.14.
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Fig. 2.1 Two-body
problem: vectors of the two
massive points P1 and P2 in
an inertial reference system
centered either in O or in B,
where B is the barycenter

Newtonian dynamics in the presence ofweak gravitational fields (MOND=Modified
Newtonian Dynamics; see the review in [1]).

In this chapter we present the classical treatment of the problem of the motion of
two massive points using for now the Cartesian formalism. The same problem will
be proposed again in Chap. 4 with the Hamiltonian formalism and in Sect. 4.14 for
the relativistic case. A classical application to the orbital motion of visual binaries
will be given in Appendix J.

2.1 Motion Relative to the Center of Mass

We reconsider the isolated self-gravitating system of point-like masses defined at the
beginning of Chap.1, with N = 2. If ri = −−→

O Pi is the radius vector of the point Pi

(i = 1, 2) from the origin O of the inertial reference system, and ri j = −r j i is the

vector
−−→
Pi Pj of the point Pj relative to Pi , the motion of the two massive points P1

and P2 is described by the solutions, ri = ri (t), of the system of vector equations
(see (1.2)):

⎧
⎪⎪⎨

⎪⎪⎩

m1 r̈1 = −G
m1m2

r212

r21
r21

,

m2 r̈2 = −G
m2m1

r221

r12
r12

.

(2.1)

As we know, the pair of vector equations (2.1) is equivalent to a system of 6 scalar
differential equations of the second order or to a system of 12 first order equations.
The general solution of the problem requires 12 integration constants, i.e., 12 first
integrals of motion.

The problem can be simplified by referring the motion to the center of mass B. As
already observed (cf. Sect. 1.4), this allows to reduce the order from N to (N − 1).



2.1 Motion Relative to the Center of Mass 29

To this end we replace the two Eqs. (2.1) with their sum and their difference:

⎧
⎨

⎩

m1r̈1 + m2r̈2 = 0,

r̈2 − r̈1 = −G
(
m1 + m2

)r12
r312

.
(2.2)

The solution of the first of these new equations:

m1r1 + m2r2 = (m1 + m2
)(
ṙ◦

Bt + r◦
B

)
, (2.3)

where ṙ◦
B and r◦

B are constant vectors, can be written in the following form:

rB = m1r1 + m2r2
m1 + m2

= ṙ◦
Bt + r◦

B . (2.4)

The vectors rB and ṙB give position and velocity of the center of gravity. The (2.4)
expresses the usual law of motion of the center of gravity of an isolated mechanical
system. Thus, without losing the generality, the barycenter B of the system can be
chosen as the origin O of an inertial reference system. In this case, ri = −−→

B Pi .
Now we express the radius r2 from the first equation in (2.2) and replace it in the

second (2.2), considering that: r12 = r2 − r1 = −(m1 + m2)r1/m2. By repeating
the operation for r1, we obtain the equations of motion for each of the two masses
in the barycentric reference system:

r̈1 + G
m3

2

(m1 + m2)2

r1
r31

= 0,

r̈2 + G
m3

1

(m1 + m2)2

r2
r32

= 0.

(2.5)

Equations (2.5) are independent of each other. They have the same form for both
masses and differ only by a constant in the second term; it means that the shape of
the two orbits is the same but the scales can be different (Fig. 2.2).

The right panel in Fig. 2.2 represents, for instance, the situation of amassive planet
in a circular orbit around a star. It is easy to prove that the first of (2.5) is satisfied
if the circular velocity of P1 is V c

1 = √
Gμ1/r1, where μ1 = m3

2/(m1 + m2)
2 is a

fictitious mass placed in the barycenter, and the velocity vector is perpendicular to
r1. The small oscillation of the star either (a) in its astrometric position or (b) in
its radial velocity offers the way to reveal the presence of the planetary companion,
even when it is not possible to observe it directly because of the dominant glow of
the star. It was by measures of this type that (a) in 1844 the German Friedrich Bessel
disclosed the presence of a companion star orbiting around Sirius and (b) in 1995
the Swiss astronomers Michel Mayor and Didier Queloz found the first exoplanet
around the star 51 Pegasi [2]: a discovery prized with the Nobel in 2019.
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x
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Fig. 2.2 The two-body problem in the barycentric system. Trajectories for three cases: elliptical
and circular orbits for m1 = m2, and circular orbits for m2 = 2.5m1

Fig. 2.3 Reduced mass
function in the two-body
problem. Dependence of the

reduced mass μ = mi m j

mi + m j
on the mass ratio

α = mi

m j
≤ 1

If m2 � m1, it is convenient to center the reference system on the larger mass.
This is just what we are going to do now.

Placing r = r2 − r1 = −−→
P1P2 (note the arbitrary choice of one of the two possible

directions of the vector r), and:

μ = m1m2

m1 + m2
, (2.6)

the second equation of the system (2.2) may be rewritten in the following way:

μr̈ + G m1m2
r
r3

= 0. (2.7)

The parameter μ, which has the dimension of a mass, is called reduced mass6 as its
value tends to that of the smaller of the two masses. If mi ≤ m j , or α = mi/m j ≤
1, then μ = mi

(
1 + α
)−1

, implying μ → mi for α → 0 and μ = mi/2 for α = 1
(Fig. 2.3).

6 The reduced mass is an harmonic mean of the masses:
1

μ
= 1

m1
+ 1

m2
.
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Finally, multiplying both members of (2.7) by ṙ and integrating, we obtain the
expression of the total specific energy7:

Es = Ts + W = 1

2
μ ṙ2 − G

m1m2

r
= const. (2.8)

Notice how the initial problem has been reduced to one requiring the knowledge of 6
first integrals only, as many as there are additive constants in the general solution of
(2.7). The latter is identical to the equation of motion of a point P of (reduced) mass

μ = m, subject to an acceleration a = −G
(
m1 + m2

) r
r3

due to a force coming from

the center C in which the whole mass of the system is concentrated, identified by the
radius vector r = −→

C P . The identity between r = −−→
P1P2 and r = −→

C P ensures that, at
any time, position and velocity of the dummy body P coincide with those of P2 (or
of P1, for a different choice of the direction of the vector r), if the center of force C
is thought to coincide with P1 (or with P2). In other words, the transformation of the
problem following the new interpretation of Eq. (2.7) allows us to treat P1 (or P2)
as a fixed point,8 which removes the typical complications of relative motions (that
is, of non-inertial reference frames). It also allows us to exploit the properties of the
central motions, herewith briefly reviewed.

A force field f is said to be central if there is a fixed point C , called center of
force, so that f(P) × −→

C P = 0. The motion of a point-like body P in a central field is
plane and has a constant areal velocity9 (central-force theorem). A theorem due to
Bertrand10 states that the orbit of P is closed if and only if the central force depends
either linearly on the distance of P from C (Hooke’s elastic force) or on the inverse
square (Newtonian force); see [3] and [4].

Given a reference systemcentered inC and indicatedwithα,β, andγ, the direction
cosines of r = −→

C P , the three scalar equations of motion of the point-like body P of
mass m are:

mẍ = |f | α, mÿ = |f | β, mz̈ = |f | γ, (2.9a)

that is:
mẍ = |f | x

r
, mÿ = |f | y

r
, mz̈ = |f | z

r
. (2.9b)

7 Remember that the specific energy is the sum of the kinetic energy in the motion about the center

of gravity when we place TB = 1

2

(
m1 + m2

)
ṙ2B = 0, and of the potential energy with a zero point

chosen so that W → 0 for r → +∞.
8 It is essential to emphasize that P1 is to be considered fixed only from the point of view of writing
the equations of motion of P2 of reduced mass μ, which are those characteristic of an inertial
reference system. Actually, P1 orbits around the barycenter of the system.
9 Rate at which the area is swept out by the vector r of a point moving along a curve:

|vA| = 1

2
lim

�t→0

|r(t) × r(t + �t)|
�t

. Note that vA is normal to the instantaneous plane of motion.

10 Joseph Betrand (1822–1900): French mathematician who studied number theory, differential
geometry, probability theory, thermodynamics, and history of science.He translated someofGauss’s
works into French.



32 2 On the Two-Body Problem

It is easy to prove that central motions are planar and imply a constant areal velocity.
Indeed, multiplying the first of (2.9b) by −y and the second by +x , and summing
the results, it is m(ẍ y − ÿx) = 0, whose integral is (ẋ y − ẏx) = hz , where hz is a
constant. Therefore, the projection of the orbital angular momentum J of P on the
z axis is constant. It is similarly proven that the other two projections of J are also
constant, and therefore J = r × mṙ = r◦ × mṙ◦ = c, where c is a constant vector,
and r◦ and ṙ◦ are the initial values of the radius vector and of the velocity. The vectors
r◦ and ṙ◦ lie on a plane orthogonal to J, which has a constant position and contains
the fixed point C , and is therefore invariable. This proves that the motion develops
on a plane.

On this fixed plane we introduce a system of orthogonal Cartesian axes x and y
centered inC . Indicatedwith θ the angle that the radius r formswith the positive semi-

axis x , so that θ = arctan
y

x
, the module of the angular momentum is |J| = mr2θ̇ =

const. This relation proves that the areal velocity Aθ = 1

2
r2θ̇ is also constant.

2.2 Reduction to the Plane

Equation (2.8) can be formally interpreted as the energy integral in the motion of a
point P of mass μ (see Eq. (2.7)) around P1, which is now fixed and at the center of
a gravitational field with potential:

U = G
m1 m2

μ

1

r
= G (m1 + m2)

1

r
. (2.10)

The fact that P2 coincides with P , and that P1 appears as a fixed point around which
P2 moves, is a consequence of the arbitrary orientation of the vector r = −−→

P1P2. Since
the motion of P is central (and therefore plane), the motion of P2 around P1 is also
plane. The plane of motion must contain the center, i.e., P1, and therefore also the
center of gravity B of the system.

In conclusion, the two-body problem can be always reduced to a plane, where we
now introduce a polar coordinate system with pole in P1 and polar axis coincident
with the x axis of a generic Cartesian reference system O[x, y], also contained on
the plane. It is (Fig. 2.4):

r = r cos θ i + r sin θ j, (2.11a)

where i and j represent the unit vectors. The polar angle θ is called true anomaly.
The time derivative of (2.11a) is:

ṙ = ṙ
[
cos θ i + sin θ j

]
+ r θ̇
[

− sin θ i + cos θ j
]
. (2.11b)
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Fig. 2.4 Reference system
for the orbit of P2 relative to
P1 on the plane of motion

By placing:

cos θ i + sin θ j = u,

− sin θ i + cos θ j = w,
(2.12)

where the unit vectors u and w are one parallel and the other orthogonal to r,
Eqs. (2.11a) and (2.11b) assume the compact form:

r = r u,

ṙ = ṙ u + r θ̇w,
(2.13)

and Eq. (2.8) rewrites as:

E = 1

2
μ
(

ṙ2 + r2θ̇2
)

− G
m1 m2

r
= const. (2.14)

Observe now that, since the central-force theorem ensures the constancy of the angu-
lar momentum of P2 in motion around P1, then:

μr × ṙ = c, (2.15)

with c constant vector.11 From (2.12) and (2.13):

μr × ṙ = μ r2 θ̇ u × w = c, (2.16)

that is:
r2 θ̇ = h, (2.17)

where the constant h has the dimensions of an areal velocity. Since the only non-null
component of the angular momentum per unit mass h is that perpendicular to the

11 One can obtain (2.15) by vector multiplying by r the Eq. (2.7), adding the null term ṙ × ṙ, and
then simplifying.
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orbital plane, we can reduce the problem by two further degrees. We will use the first
two integrals (2.14) and (2.17) to obtain the equation of the trajectory and the time
equation ofmotion of P2 around P1.Writing (2.17) as dθ = (h/r2)dt , the expression
(2.14), which is actually a first integral (cf. Sect. 4.6), can be placed in two different
forms:

dt =
√

μ

2

dr
√

E + G
m1 m2

r
− μh2

2r2

, (2.18a)

dθ =
√

μh2

2

dr/r2
√

E + G
m1 m2

r
− μh2

2r2

. (2.18b)

These equations establish the functional dependence of the modulus of r on the
time t andon the true anomalyθ respectively.Wewill firstly integrate equation (2.18b)
in order to derive the relation between θ and r , i.e., the equation of the trajectory.
Before that, though, we want to analyze directly the type of motion considering the
so-called effective potential energy.

2.3 The Effective Potential Energy

We obtain θ̇ from the (2.17) and replace it in the expression of the total energy (2.14)
for the extreme case μ → m2, when m1 � m2:

E = 1

2
m2 ṙ2 + m2h2

2r2
− G

m1m2

r
. (2.19)

We call effective potential energy the quantity:

Eeff = E − 1

2
m2 ṙ2 = m2h2

2r2
− G

m1m2

r
. (2.20)

It equals the total energy when the radial velocity is zero, i.e., when r has an extreme.
Therefore the trajectory (we will see in the next section that it has to be a conic in
the two-body problem) must be confined between the values of the intercepts of the
Eeff curve (given for an assigned value of the angular momentum per unit mass h)
with the constant value of the total energy E (Fig. 2.5). The minimum dEeff/dr = 0
corresponds to the circular orbit since this is the case in which the centrifugal force
equals the gravitational pull, as it can be verified by direct derivation. What do we
learn from that?
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eff

r

circular

bound

unbound

Fig. 2.5 Example of effective potential energy, Eeff, for a given value of the angular momentum
per unit mass h. The intercepts with a line of constant total energy (E) with Eeff ≤ 0 give the range
of radial distances allowed to the motion (solid blue line). Notice that the circular orbit (red dot)
occurs there where Eeff has a minimum. For Eeff > 0 there is only a lower limit to r (solid green
line)

1. First of all, not all negative values of E are allowed for a given value of h; only
those when E ≥ min(Eeff).

2. The minimum of the allowed total energy corresponds to a circular orbit with
radius rc = Gm1/h2 and circular velocity V 2

c = Gm1/rc. This implies that the
circular velocity is that with the highest stability (you must always spend energy
to change it).

3. For all values of min(Eeff) < E < 0, the trajectory is confined between a pericen-
tric (rmin) and an apocentric (rmax ) value, so it is limited in space.

4. For E ≥ 0 (there is no upper limit to the values of the total energy), the trajectories
have only a lower boundary (rmin), i.e., they are open.

2.4 The Trajectory

We now solve Eq. (2.18b). The structure of the right-hand side suggests to choose
the reciprocal of r as the integration variable. We put:

x = 1

r

√
μ h2

2
+ x◦, (2.21a)

where x◦ is a constant to be determined in such a way that the expression under the
root at the right side of (2.18b) turns into a difference of squares. It is:
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x◦ = −G
m1 m2
√
2μ h2

, (2.21b)

from where it follows:

dθ = − dx
√

E + (Gm1 m2)2

2μ h2 − x2

= − dz
√
1 − z2

, (2.22)

with:

z = x
√

E + (Gm1 m2)2

2μ h2

. (2.23a)

The latter integrates into:

θ − θ◦ = arccos z = arccos
x

√

E + (Gm1 m2)2

2μ h2

, (2.23b)

where θ◦ is an integration constant. Re-inserting the source variable r by the (2.21a)
and (2.21b), after some manipulation we obtain the equation of the trajectory of P2

in its motion relative to P1:

r =
μ h2

G m1 m2

1 +
√

1 + E 2μ h2

(G m1 m2)
2 cos(θ − θ◦)

= p

1 + e cos(θ − θ◦)
, (2.24)

with the parameters:

p = μ h2

G m1 m2
≥ 0, (2.25a)

e =
√

1 + E 2μ h2

(G m1 m2)
2 ≥ 0. (2.25b)

Whatever the (non-negative) values of the parameters are, Eq. (2.24) represents a real
non-degenerate conic in a coordinate system whose pole, coincident with P1, also
contains the focus of the conic itself. According to one of the possible definitions for
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this family, a conic is in fact any plane curve being the geometric locus of the points
whose distances r and k from a fixed point (focus) and from a fixed line (directrix)

respectively have a constant ratio e (eccentricity). Then: e = r

k − r cos θ
, identical

to (2.24) if we place p = ke (see [5]).
In summary, so far we have been able to prove that, under the action of the mutual

gravitational forces only, the massive point P2 (or P1) moves with constant areal
velocity around P1 in a plane orbit that is a conic with one focus in P1. Note the great
generality of this simple result, and remember the fact that neither P1 nor P2 define
an inertial system.

2.5 Laplace-Runge-Lenz Vector

We now find the vector that is constant during the motion. We will see that this
additional first integral is not independent, being related to two fundamental ones
(momentum and total energy). Let us multiply vectorially each term of the equation
of motion (2.7) by the momentum vector J = r × μ ṙ:

μ r̈ × J + Gm1m2
r × J

r3
= 0. (2.26)

Since J is constant, the first term turns to be: μ
d(ṙ × J)

dt
. For the second term we

have12:

r × J
r3

= μ
r · (r · ṙ) − ṙ · (r · r)

r3
= μ

r · ṙ − r · ṙ
r2

= −μ
d

dt

(r
r

)
. (2.27)

After integration we obtain:

A = ṙ × J − Gm1m2
r
r
, (2.28)

where the constant vector A is named after Laplace-Runge-Lenz.13 It is simple to
prove that A is orthogonal to the momentum vector J. In fact:

J · A = J · (ṙ × J) − G m1 m2
r · (r × μ ṙ)

r
= 0. (2.29)

12 The vector triple product develops into dot products according to the following formula:

a × (b × c) = b (a · c) − c (a · b) .

13 Carl Runge (1856-1927) andWilhelmLenz (1888-1957):Germanmathematicians and physicists.
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This means that, for a central Keplerianmotion,A lies always on the plane of motion.
Let us now square the (2.28):

A2 = (ṙ × J)2 − 2 G m1 m2
r · (ṙ × J)

r
+ (G m1 m2)

2. (2.30)

Using the permutation rule14 in the second term at the right-hand side and the orien-
tation of the vectors:

r · (ṙ × J) = J · (r × ṙ) = J · J
μ

= J 2

μ
, (2.31)

with which the (2.30) becomes:

A2 = ṙ2 J 2 − 2G m1 m2

μ

J 2

r
+ (G m1 m2)

2. (2.32)

Taking into account the energy conservation law given by Eq. (2.8), we derive the
second relation between the first integrals (the first relation is (2.29)):

A2 = (G m1 m2)
2 + 2 E J 2

μ
. (2.33)

We remind here that the two-body system of differential equations is of 6-th order.
Thus, at least 5 first integrals of motion are needed for the solution. Four of them
concern the angularmomentum (3 scalars) and the total energy.Due to an existence of
the additional first integral (the Laplace-Runge-Lenz vector), the two-body problem
is solved. This first integral, as we could see, establishes a relations between the
others two. Note that we finally have exactly 5 first integrals taking into account the
two provided by the relations (2.29) and (2.33). This allows us to obtain the equation
of orbit as we can see immediately. By developing the scalar product:

A · r = Ar cos θ = r · (ṙ × J) − G m1 m2 r, (2.34)

we obtain:

r =
J 2

G m1 m2 μ

1 + A
G m1 m2

cos θ
, (2.35)

14 The cyclic permutation rule of the cross product states that:

a · (b × c) = c · (a × b) = b · (c × a).
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Fig. 2.6 Orbital system of
coordinates. The center
coincides with one focus of
the conic orbit (sketched as
an ellipse here). The axes x ′
and y′ lie on the orbital plane
and the x ′ is chosen to pass
through the pericenter. We
have indicated the directions
of J, A, and J × A, without
tracing the corresponding
vectors

which is the equation of a conic with eccentricity and focal parameter given by:

e = A

G m1 m2
,

p = J 2

G m1 m2 μ
.

(2.36)

We obtain in this way the result already acquired (see (2.24) with (2.25a), (2.25b))
that a particle in a central Keplerian force field describes a conic orbit focused on
the center of motion.

Since the two-body problem is plane, it is convenient to use a coordinate sys-
tem with one of its principal planes containing that of motion (the so-called orbital
system). Indeed, we can construct this coordinate system [x ′y′z′] with origin at the
massive point P1 and axes parallel to three orthogonal vectors. One of them is the
total momentum Jwhich is always orthogonal to the orbital plane. So, we can choose
the z′ axis along the direction of J. The second axis, x ′, is set coincident with the
line through the point P1 and the pericenter, with positive direction being the same
of the Laplace-Runge-Lenz vector A. Finally, the third axis y′ is the vector along
J × A (see Fig. 2.6).

In this system the coordinates of the point P2 are: x ′ = r cos θ, y′ = r sin θ, where
r is given by (2.35). The orbital system of coordinates is appropriate for dealing
with the motion of the massive point on its orbit without paying attention to the
orientation of the orbit itself. We will consider in Sect. 2.8 the system accounting for
the orientation of the orbit in space.

We can now find the law of the motion θ(t). From the conservation of momentum:
J = r × μṙ = −−→

const = Jz′k, where k is the unit vector of the z′ axis, we have:

Jz′ = μh = μ(x ′ ẏ′ − y′ ẋ ′) = μr2θ̇, (2.37)
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from which it follows:
p2

(1 + e cos θ)2
dθ

dt
= h, (2.38)

and, after integration:

∫ θ

0

dθ

(1 + e cos θ)2
=
√

G m1 m2

μ

1

p3/2
(t − t◦), (2.39)

where we used (2.25a). In this case t◦ is the time of passage at the pericenter and
corresponds θ = 0. We will solve the integral in (2.39) for each conic orbit after
some general considerations.

2.6 Geometry of Conic Orbits

Multiplying the expression for Laplace-Runge-Lenz vector (2.28) by r we obtain:

r · A = J 2

μ
− G m1 m2 r, (2.40)

or:

x Ax + y Ay + z Az − J 2

μ
+ G m1 m2

√
x2 + y2 + z2 = 0, (2.41)

which is the equation of a conic surface. The equation of the plane of the moving
mass:

x Jx + y Jy + z Jz = 0, (2.42)

is given by r · J = 0. The orbit of the mass is the result of the intersection of plane
(2.42) with the surface (2.41) and is determined by the initial conditions. Since the
conic surface is of the second order, the resulting intersection curve is of the second
order too. We remind that in a Cartesian reference system, the family of the conics
is analytically represented by a generic equation of second degree in two variables:

c1x2 + c2y2 + c3x y + c4x + c5y + c6 = 0. (2.43)

In this sense, conics are second in the hierarchy of complexity of plane curves, imme-
diately after the straight lines, represented by linear equations [5]. A general property
of the quadratic forms (2.43) is that they usually allow a coordinate transformation
able to simplify their expression in:

c′
1x2 + c′

2y2 + c′
3 = 0. (2.44)
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Fig. 2.7 Conic sections: ellipse, parabola, hyperbola

When this happens (in the case of the ellipse and of the hyperbola), the origin of the
new coordinate system is also the center of the conic, its axes contain the main axes
(which are also symmetry axes), and Eq. (2.44) is said to be canonical.

The conics15 derive their name from the fact that they can be obtained as sections
of a (double) cone by a plane (see Fig. 2.7). If α is the semi-aperture of the cone
(angle between the axis and one generatrix) and β is the angle that the normal to the
secant plane forms with the axis of the cone, it is:

an elliptical section if 0 < β < α;
a parabolic section if β = α;
a hyperbolic section if α < β ≤ π/2.

2.6.1 Ellipse

Figure 2.8 shows an ellipse in rectangular coordinates with central origin and coor-
dinate axes coinciding with the main axes. The corresponding (canonical) equation:

x2

a2
+ y2

b2
= 1, (2.45)

15 Conic sections were known in ancient Greece. They were discovered by Menaechmus (380–
320 BC), a Greek mathematician and philosopher, student of Eudoxus. He found these sections
by solving the problem of doubling the cube and was the first to prove that ellipse, parabola, and
hyperbola can be obtained by cutting a cone with an inclined plane. There is a famous answer of
Menaechmus to Alexander the Great who asked him the best way to learn geometry: O king, to
travel through the country there are private roads and royal roads, but in geometry there is one road
for all. Conic sections became important in mechanics only after the Newtonian law of gravity.
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Fig. 2.8 Geometrical properties of the ellipse. The outer circle is named pedal: it is the locus of
the orthogonal projections of one focus on the tangent lines to the ellipse

contains the lengths a and b of the major and minor semi-axes respectively. The
following quantities are defined:

axial ratio 0 <
b

a
≤ 1, (2.46a)

ellipticity ε = 1 − b

a
, (2.46b)

eccentricity e =
√

1 − b2

a2
. (2.46c)

The product ae measures the distance of each focus from the center. Note that
the ellipticity is not widely used by mathematicians, but it is common among
astronomers.16

16 For example, the apparent flattening of elliptical galaxies in the Hubble morphological classifi-
cation is given as 10 × (1 − b/a), where a and b are the lengths of the average semi-axes of the
elliptical images of these objects.
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Let us now introduce, on the plane of the ellipse, a system of polar coordinates
with center at one focus and polar axis coincident with the focal axis (usually oriented
towards the pericenter). This coordinate system coincideswith the orbital system (see
Sect. 2.5). Through the transformation equations:

x = ae + r cos θ,

y = r sin θ,
(2.47)

the (2.45) turns into:

r = p

1 + e cos θ
, (2.48)

where the constant:
p = a (1 − e2) > 0 (2.49)

is named focal parameter. The angle θ◦ in (2.24) has the geometrical meaning of true
anomaly of the focal axis.

The parametric equations:
x = a cos E,

y = b sin E,
(2.50)

provide another representation of the ellipse in a centered system of rectangular
coordinateswith one of the axes coincidentwith the focal line, particularly convenient
for numerical sampling of the ellipse (for example, when you want to plot an ellipse
via a broken line). It is easy to prove that these equations satisfy the (2.45).

The geometric meaning of the parameter E is readily understood looking at
Fig. 2.8. It is the angle at the center that is common to the points Q of the minor
(inscribed) circle and S of the major (circumscribed) circle,17 given by horizontal or
vertical projections of the point R on the ellipse. You can be soon convinced of this
geometrical construction by noting that the ellipse is the orthogonal projection (see
Appendix J) of the pedal circle on a plane with inclination i = arcsin e, and that the
major axis is parallel to the line of nodes (intersection of the two planes).

In order to find the relation between the true anomaly θ and the angle E , called
eccentric anomaly, it is enough to compare the coordinates of the point R in Fig. 2.8.

a cos E = a e + r cos θ,

b sin E = r sin θ.
(2.51a)

17 Called pedal, Latinate word for ‘foot’, because there the tangents to the ellipse encounter their
perpendicular lines passing for one of the foci; see also Sect. 2.6.1.
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Eliminating r through (2.48), it is:

sin θ =
√
1 − e2 sin E

1 − e cos E
,

cos θ = cos E − e

1 − e cos E
,

(2.51b)

or, by inverting the equations,

sin E =
√
1 − e2 sin θ

1 + e cos θ
,

cos E = cos θ + e

1 + e cos θ
.

(2.51c)

Further manipulations give new useful relations. In particular, introducing into (2.48)
the expression for cos θ given by the second of the (2.51b), we obtain:

r = a (1 − e cos E). (2.52)

This expression for the focal radius r of (2.48)makes it easy to calculate area integrals.
In fact, the area swept by the focal radius when the true anomaly grows from 0 to θ,
is:

A(θ) = 1

2

∫ θ

0
r2 dθ = a2

2

∫ θ

0

(
1 − e cos E

)2
dθ =

= ab

2

∫ E

0

(
1 − e cos E

)
d E, (2.53a)

where
dθ

d E
=

√
1 − e2

1 − e cos E
is found by differentiating the first of the (2.51b) and

using the second. Expressed as a function of the eccentric anomaly, the area integral
is simply found:

A(θ) = A(E) = ab

2

(
E − e sin E

)
. (2.53b)

A natural consequence of this equation is the introduction of a third angular param-
eter, the mean anomaly:

M = 2π
A

πab
= 2A

ab
= E − e sin E . (2.54)

The angle M measures the opening of a circular sector of area A in a circle having
the same total area πab as the ellipse. In other words, the transcendental equation
(2.54), named after Kepler, establishes a correspondence between points of an ellipse
and those of a circumference (thus among M , E , and θ) by equating the areas of the
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corresponding sectors. Its importance in astronomy is remarkable because it helps
finding the position of celestial bodies through time (cf. Sect. 2.7.1) and justifies
the efforts made to solve it. Some analytic expansions of the Kepler equation and a
method to solve it numerically are presented in Appendix F.

2.6.2 Parabola

Same as the circle (obtained by placing e = 0), the parabola is a special case of the
conic section when e = 1. Thus it is also a uniparametric curve. Here the parameter,
which for the circle is the radius, is the distance p of the focus from the directrix (see
Fig. 2.9). Formally, from (2.48):

r = p

1 + cos θ
. (2.55)

Note that, in order to preserve the expression p = a(1 − e2), the parameter a, not
needed for the parabola, must be thought equal to +∞. The Cartesian form of
Eq. (2.55) is y2 = 2px . The integration of the area follows with no difficulty:

Fig. 2.9 Geometric
properties of the parabola
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A(θ) = 1

2

∫ θ

0
r2 dθ = p2

2

∫ θ

0

dθ

(1 + cos θ)2
= p2

8

∫ θ

0

dθ

cos4
θ

2

=

= p2

4

∫ θ

0

(

1 + tan2
θ

2

)

d

(

tan
θ

2

)

,

(2.56a)

from where:

A(θ) = p2

4

(

tan
θ

2
+ 1

3
tan3

θ

2

)

. (2.56b)

2.6.3 Hyperbola

The Cartesian equation of the hyperbola, equivalent to (2.45) for the ellipse, is:

x2

a2
h

− y2

b2
h

= 1, (2.57)

where we added the suffix “h” to remark the difference between the geometric semi-
axes of the hyperbola, which are positive, and the parameter a = −ah < 0 that we
will introduce in Sect. 2.7. If θ is measured from the pericenter (see Fig. 2.10), the
polar form of the equation remains, as for the ellipse:

r = p

1 + e cos θ
, (2.58)

where in this case:

e =
√

1 + b2
h

a2
h

> 1,

p = ah (e2 − 1).

(2.59)

For the hyperbola too, a parametric equation of the type (2.50) can be defined:

x = ah cosh F,

y = bh sinh F.
(2.60)

The use of hyperbolic functions is required by the imaginary intercepts of (2.57)
on the y-axis. In this case the eccentric anomaly is designated with F . In analogy
with the ellipse, it is:

sinh F =
√

e2 − 1 sin θ

e cos θ + 1
,

cosh F = e + cos θ

e cos θ + 1
,

(2.61)
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Fig. 2.10 Property of the
hyperbole. The suffix “h”
added to the symbol for the
major axis helps to
distinguish it from the
parameter a = −ah < 0

and the equation of the focal radius is:

r = ah (e cosh F − 1). (2.62)

Finally, the area integral:

A(θ) = 1

2

∫ θ

0
r2 dθ = a2

h

2

∫ θ

0

(
e cosh F − 1

)2
dθ =

= ah bh

2

∫ F

0

(
e cosh F − 1

)
d F, (2.63a)

gives:

A(θ) = ah bh

2

(
e sinh F − F

)
, (2.63b)

which is the equivalent of (2.53b) and suggests to introduce a mean anomaly M =
e sinh F − F .
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2.7 Properties of Conic Orbits

The considerations of the previous paragraph allow us to state that the focal equation
of any real not degenerate conic curve can be written in the following form:

r = a (1 − e2)

1 + e cos(θ − θ◦)
, (2.64)

provided that the parameters a and e fit the conditions summarized in Table 2.1. The
constant θ◦ is the true anomaly of the focal axis. If θ0 = 0, angles are counted from
the point of minimum distance between the two bodies, i.e., the pericenter, usually
in the direct sense (counterclockwise).

By associating to Eq. (2.25b) the intervals of e appearing in Table (2.1), we obtain
a constraint for the total energy in the two-body problem; it must be E < 0 if e < 1,
E = 0 if e = 1, and E > 0 if e > 1. In other words, the trajectory of P2 in its motion
around P1 will be elliptical, parabolic, or hyperbolic whether the specific energy is
negative (bound system), null or positive (unbound system). This property is even
more evident if referred to themajor axis. Bymaking p explicit in (2.25a), we obtain:

p = a (1 − e2) = μ h2

G m1 m2
, (2.65)

from where, by eliminating e though (2.25b), it results:

a = −G
m1 m2

2 E . (2.66)

This important relation shows that the characteristic length a of the conic is com-
pletely determinedby the specific energy, andvice versa, confirming the classification
in Table 2.1. From (2.65) we also see that, other things being equal, eccentricity is
fixed by the value of the angular momentum per unit mass h. Based on (2.25b), the
latter is upper limited by the specific energy only in the case of the elliptical orbit
(E < 0).

Wewant to visualize these results considering an elliptical orbit. In order to change
its maximum size, it will be necessary and sufficient to vary the specific energy,
obviously keeping it negative. To change instead the flattening while preserving the
maximum size (semi-major axis), we must act on the value of h.

Table 2.1 Limits for the parameters a and e

Conic type Eccentricity Semi-major axis Total energy

Ellipse 0 ≤ e < 1 a > 0 E < 0

Parabola e = 1 a = ±∞ E = 0

Hyperbola e > 1 a < 0 E > 0
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Replacing in (2.8) the value of E given by (2.66), we have:

E = 1

2
μ ṙ2 − G

m1m2

r
= −G

m1m2

2a
, (2.67)

from which it comes out immediately the expression of the modulus of the velocity
of P2 as a function of the focal radius and of the parameter a (Table 2.1):

ṙ2 = 2 G (m1 + m2)

(
1

r
− 1

2 a

)

. (2.68)

The expression (2.68) secures the velocity at any position along the trajectory. For an
elliptical orbit, which is periodical, the maximum of velocity over a period is reached
at rmin = a(1 − e), i.e., at the minimum value of the separation between P1 and P2:

V 2
max = G (m1 + m2)

a

1 + e

1 − e
; (2.69)

conversely, for rmax = a(1 + e):

V 2
min = G (m1 + m2)

a

1 − e

1 + e
. (2.70)

So, the ratio of the velocities in the two apsidal points is:

Vmax

Vmin
= 1 + e

1 − e
= rmax

rmin
. (2.71)

Let us now consider the point B at one end of theminor axis (Fig. 2.11). From (2.46c)
it is easily shown that its distance from the focus F is equal to the major axis length:
that is, there r = a. Consequently, from the (2.68) the velocity in B is:

VB =
√

G (m1 + m2)

a
. (2.72)

Fig. 2.11 Radius vector and
velocity at the minor axis
extremes
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So B satisfies the condition 2TB + W B = 0 given by (1.54), i.e., the velocity VB and
the semi-major axis a are average values in the sense of the virial theorem (Sect. 1.5).
One can arrive at the same conclusion by observing that VB is the modulus of the
circular velocity for an orbital radius r = a; but, unless e = 0, its vector is not
perpendicular to the radius vector.

For parabolic motion (E = 0), the law of energy conservation gives immediately:

V 2
e (r) = 2 G

m1 + m2

r
, (2.73)

which is consistent with (2.68) when a → +∞. Ve is called escape velocity: it
represents the minimum velocity required to P2 (starting at the distance r from P1)
to reach an asymptotically infinite distancewith a zero velocity. In fact, for r → +∞,
it is Ve → 0, i.e., the velocity of P2 vanishes. Note that the escape velocity at a given
distance r is

√
2 times of the circular velocity at the same distance.

The velocity for the hyperbolic motion (positive total energy) is given by (2.68)
with the change ah = −a > 0, since now the parameter a is negative (Table 2.1):

ṙ2 = 2 G (m1 + m2)

(
1

r
+ 1

2 ah

)

. (2.74)

At any distance r , the velocity of the point P2 is greater than the corresponding escape
velocity Ve, and for r → +∞ it is:

V 2
min = G

m1 + m2

ah
. (2.75)

This non-null velocity is called hyperbolic excess.
It is worth noticing that, in the two-body problem, there are three types of the

straight motions (degenerate cases) corresponding to negative, positive and zero
total energy. They correspond to the three types of universe models in Newtonian
cosmology: closed E < 0, open E > 0, and flat E = 0 (see [6] and Footnote38).

These results are quite general. Further developments require to treat separately
the three types of orbits corresponding to the negative, null, and positive values of the
specific energy E . Some results obtained in the previous sections are important for the
elaboration of a simple model of gravitational interaction, which will be described
in Appendix L.

In passing, we want to review here an intriguing use of the formula (2.73) that
Laplace made in his Exposition du Système du Monde (1796) to introduce the con-
cept of dark body (naive predecessor of what we now call ‘black hole’). Following
Newton, the French scientist believed that light consisted of tiny particles of negligi-
ble mass18 and asked himself which should be the minimum size of a homogeneous
sphere capable of preventing those particle from leaving the surface and flying away
(i.e., a body with an escape velocity at the surface equal to the speed of light). If

18 We call them photons after the American physicist Gilbert N. Lewis (1875–1946).
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m1 = 4

3
πρ◦ R3 is the mass of the body of density ρ◦ and the escape velocity is set

equal to the speed of the light,19 Ve = c, the radius of the ‘monster’ writes20:

RDB = 2Gm1

c2
=
√

3c2

8πGρ◦
, (2.76)

which, for ρ◦ = 5.5 gr/cm3 (density of the Earth) and c = 3 × 1010 cm/s (modern
value, very close to that known to Laplace owing to estimates based on the light
aberration discovered in 1729 by the English astronomer and priest James Bradley
(1693–1762)), turns out to be RDB = 1.7 × 1013 cm= 246 R
. It is self-evident that
such a body cannot exist in nature as it could not be hydrostatically supported.

2.7.1 Elliptical Orbit (E < 0)

Let us consider the motion of an isolated and bound system of two massive points
(E < 0). The orbit of P2 around P1 must be an ellipse with focus in P1. The time
equation of motion (2.18a) can be written as:

dt =
√

μ

−2E
r dr

√
μh2

2E + 2 a r − r2
, (2.77)

having grouped −E at the denominator of the second member and made use of
(2.66). Adding and subtracting a2 in the root at the denominator of the second term
and noticing that, from the combination of (2.65) and (2.66), it is:

1

2

μ h2

E = a2(e2 − 1), (2.78)

we obtain:

dt =
√

a

G (m1 + m2)

r dr
√

a2e2 − (r − a)2
. (2.79)

By using Eq. (2.52), we introduce the eccentric anomaly:

19 Thevalue of the speedof lightwas known since theDanishOleRœmer (1644–1710) hadmeasured
it at the end of 17-th century (although with a large error: 211,000 instead of 300,000 km/s), using
the eclipses of Jupiter’s satellites discovered by Galilei in 1609.
20 The expression for RDB coincides with the gravitational radius (e.g. the radius of a black hole)
which appears in the spherically symmetric solution of Einstein’s equation in empty space. We will
use this Schwarzschild metric to find the relativistic effect in Sect. 4.14.
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r − a = −ae cos E,

dr = ae sin E d E .
(2.80)

It is:

dt =
√

a

G (m1 + m2)

(
a − ae cos E

)
d E, (2.81a)

that is easily integrated in:

t − t◦ =
√

a3

G (m1 + m2)

(
E − e sin E

)
, (2.81b)

where t◦ is a constant. In order to clarify the meaning of this equation, we compare
it to (2.53b). It must be:

2A

ab
=
√

G (m1 + m2)

a3

(
t − t◦
)
, (2.82)

where A is the area swept by the focal radius r when the true anomaly varies from
zero at the time t◦ to the value θ at the time t . For θ = 2π, i.e., for a complete
revolution, the area of the ellipse is A = πab, and the time interval t − t◦ is equal to
the period P . So, placing:

n = 2π

P
=
√

G (m1 + m2)

a3
, (2.83)

where n is called mean motion, Eq. (2.81b) becomes:

2π

P

(
t − t◦
)

= n(t − t◦) = E − e sin E . (2.84)

This expression clarifies the meaning of the mean anomaly:

M = 2π

P

(
t − t◦
)

= n(t − t◦) =
√

G(m1 + m2)

a3/2
(t − t◦), (2.85)

introduced in Sect. 2.6.1; it represents the true anomaly of P2 if it moves in a circular
orbit with the same period P . Finally, Kepler’s equation takes the form:

E − e sin E = M. (2.86)

Equations (2.52), (2.84), and (2.85), describe the dependence on time of the azimuth
of the focal radius through the auxiliary variables M and E . A convenient expression
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for the dependence on time of the true anomaly θ is finally found through the relations
(2.51b):

tan
θ

2
=
√
1 + e

1 − e
tan

E

2
. (2.87)

In fact:

tan
θ

2
= sin θ

1 + cos θ
=
√
1 − e2

sin E

1 − e cos E

(

1 + cos E − e

1 − e cos E

)−1

=

=
√
1 − e2 sin E

1 − e cos E + cos E − e
=

√
1 − e2 sin E

(1 − e)(1 + cos E)
=

=
√
1 + e

1 − e
tan

E

2
. (2.88)

By using this change of variable in the integral at the left side of (2.39), we obtain
the Kepler’s equation (2.86). The above results can be compared with the empirical
laws obtained by observing the motions of the planets around the Sun, known as
Kepler’s laws.21

First law: all planets move around the Sun in elliptical orbits, with the Sun at one
of the foci.

Second law: the radius vector joining a planet to the Sun sweeps out equal areas
in equal lengths of time.

Third law: the square of the sidereal period, P , of any planet in its motion around
the Sun is proportional to the cube of the major axis, a, of the orbit.

In the framework of the two-body problem, which represents a first approximation
of the real motion of a planet around the Sun, the first two laws are the natural
consequence of the fact that the planets are gravitationally bound to the Sun (E < 0).
The third law is an approximation of the expression (2.83). The latter, in fact, written
in the form:

P2

a3
= 4π2

G (m1 + m2)
, (2.89)

shows that P2 and a3 are indeed proportional, but for the same total mass (m1 + m2).
In the case of the Solar System, which is dominated by the Sun, the sum (m1 + m2)

21 German mathematician and astronomer, Johannes Kepler discovered three laws for plane-
tary motions while investigating the accurate astrometric measurements collected by the Danish
astronomer Tycho Brahe; the best data of pre-telescope era. In 1599, Tycho, while in Prague serv-
ing the Emperor Rudolph II, hired the young Kepler, already famous for his mathematical skills,
and charged him to interpret in a Ptolemaic (geocentric) key his measurements of the planetary
positions (especially Mars), mostly collected at the observatory of Uraniborg, located in an island
of the Northern Sea. But soon after Tycho died, leaving clear field to the young man of Copernican
faith. Kepler published his first two laws in the Astronomia Nova in 1609 and only 10 years later
the third one in the Harmonices mundi, the most difficult to discover and the least accurate, but also
that of greater physical content. Remarkable is also the work of Kepler in the field of geometric
optics, where among other things has coined much of the nomenclature still in use today.
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equals to the mass of the Sun M
 at better than 0.1% in the least favorable case of the
most massive planet Jupiter, and is therefore almost constant. The same would not
be true if the bodies in play were of comparable masses, as it happens, for instance,
in binary stars.22

For a planet of negligible mass (m P/M
 → 0), the equality (2.89) provides:

a =
(

G M

4π2

P2

)1
3

. (2.90)

With P = 365.d256365 = 31558149.s9, terrestrial sidereal year, and M
 = 1.989 ×
1033 g, the semi-major axis takes the value a = 1.4961 × 1013 cm. This quantity is
called Astronomical Unit (AU) and corresponds to the semi-major axis of the orbit
of a massless point in motion around the Sun with sidereal period equal to that of
the Earth.

At the end of this paragraph wemake some considerations on the velocity of P2 in
the orbital motion. The modulus of ṙ is given by (2.68). The radial and transverse23

components (parallel and orthogonal to the vector radius) are:

Vr = ṙ · u = ṙ ,

Vt = ṙ · w = r θ̇.
(2.91)

Let us examine the radial component ṙ . Differentiating (2.48) with respect to time,
we have:

ṙ = p e θ̇ sin θ

(1 + e cos θ)2
, (2.92a)

or, with (2.17) and (2.48):

ṙ = e h

p
sin θ. (2.92b)

The transverse component of the velocity is:

Vt = r θ̇ = r
h

r2
= h

p
(1 + e cos θ). (2.93)

So, we see that during motion the module of the velocity varies in the following way:

V =
√

V 2
r + V 2

t = h

p

√
1 + 2e cos θ + e2. (2.94)

22 Calling P◦ the period of a massless particle orbiting around a point of mass m1, that of a point
of mass m2 is: P = P◦ × (1 + α)−1/2, with α = m2/m1.
23 Do not mistake the transverse with the tangential component, which is just the velocity itself.
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Fig. 2.12 Components of
the orbital velocity in the
elliptical motion of P2
relative to P1

It is again apparent that the extremal values of the velocity occur at the apsidal
points (θ = 0,π). We now decompose the radial component Vr into two vectors, one
transverse with modulus equal to:

|t| = e r2θ̇

p
cos θ, (2.95)

and the other perpendicular to themain axis (Fig. 2.12). The latter is a constant vector
n as its modulus is:

|n| = |ṙ u|
sin θ

= e h

p
, (2.96)

and the direction is also invariable. Summing up the transverse component of the
velocity ṙ of P2, we obtain a vector whose modulus:

| r θ̇ w + t| = | r θ̇ w| − | t| = r θ̇ − e r2θ̇

p
cos θ = h

p
, (2.97)

is also constant. In conclusion, we have proven (Fig. 2.13) that, at any epoch during
the elliptical motion, the velocity of P2 consists of two components, normal and
transverse, both constant in modulus, the first being also constant in direction. So,
the motion of P2 consists of a circular motion (but not necessarily uniform) with
velocity h/p, and of a uniform translational with velocity eh/p normal to the focal
axis of the ellipse.

The result just obtained can be used with advantage in many circumstances; for
example in the study of the light aberration, where it allows us to neglect the compo-
nent of the orbital velocity of the Earth that is constant in direction and orientation,
since it produces an apparent displacement of the position of the stars that is inde-
pendent of time.
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Fig. 2.13 Decomposition of the orbital velocity vector ṙ in the Keplerian motion of P2 about
P1. The curve described by the velocity vector ṙ applied to a fixed point (P1) takes the name of
hodograph of motion (from the Greek ‘hodós’, meaning ‘path’). Note that the tangential velocity
rotates with the angular velocity θ̇, which is constant only for circular motions. This is the key to
understand why the constant velocity vector n does not generate a secular drift of the orbit

2.7.2 Average Velocity on an Elliptical Orbit

The development in series (N.56) allows us to calculate the average velocity along
an elliptical orbit. From the third Kepler law (2.89) we obtain the period:

P = a3/2

√

4π2

G (m1 + m2)
, (2.98)

so the average velocity writes as:

Vm = L

P
=

√
G (m1 + m2)

2π

L

a3/2
. (2.99)

From (N.49) to (N.56) it is:

L = 2π a

[

1 − 1

4
e2 − 3

64
e4 − 5

256
e6 − · · ·

]

, (2.100)

and thus:

Vm =
√

G (m1 + m2)

a

[

1 − 1

4
e2 − 3

64
e4 − 5

256
e6 − · · ·

]

=

= V c
m

[

1 − 1

4
e2 − 3

64
e4 − 5

256
e6 − · · ·

]

,

(2.101)
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where V c
m =
√

G (m1 + m2)

a
is the velocity on the circular orbit with radius a. From

this equation we see that the average velocity on an elliptical orbit with the same
major axis decreases with ellipticity. This property tell us quantitatively an obvious
property since, while the period depends only on the size of mayor axis, the length
of the orbit decreases with ellipticity, at least as fast as 1 − e2/4.

We can now ask which are the values of the radius in the elliptical orbit where the
instantaneous velocity (see (2.68)):

V = √G (m1 + m2)

√
2

r
− 1

a
= V c

m

√
2a

r
− 1, (2.102)

equals the average velocity (2.101), assuming that we may truncate the expansion to
the second order in e. From (2.102) to (2.101) it is:

V

Vm
=

√
2a

r
− 1

(

1 − e2

4

) = 1, (2.103)

from where:

r ≈ 4a

4 − e2
. (2.104)

Remembering (2.64) with θ◦ = 0 and using (2.102), we may find the value of the
true anomaly θm from which V (θm) = Vm :

θm = arccos

(
a(1 − e2)

e r
− 1

e

)

≈ arccos

(

−5

4
e

)

, (2.105)

provided that e remains small. This tell us that the transition point where the instanta-
neous velocity equals the mean velocity is beyond the latus rectum intersection with
the ellipse in the direction of the apocenter and its anomaly grows as the ellipticity
increases.

2.7.3 Parabolic Orbit (E = 0)

If the orbit of P2 is parabolic, it must be E = 0. Thus Eq. (2.18a) becomes:

dt =
√

μ

G m1 m2

r dr√
2r − p

, (2.106)

and, replacing r with the expression (2.55):
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dt =
√

p3

G (m1 + m2)

sin θ dθ

(1 + cos θ)2
√
1 − cos2 θ

=

=
√

2q3

G (m1 + m2)

d(θ/2)

cos4 (θ/2)
, (2.107)

having set, as usual, p = 2q. The integral of (2.107), with the introduction of the
mean anomaly M , provides the time equation of motion:

M =
√

G (m1 + m2)

2q3

(
t − t◦
)

= tan
θ

2
+ 1

3
tan3

θ

2
. (2.108)

We want to prove that this cubic equation in θ/2 has a single real root for each value
of t . For the fundamental theorem of algebra, the (2.108) must admit either three real
roots or just one real and two complex conjugate roots. It can be proven that, being
the coefficients of the same sign and missing the second degree term, two solutions
must be complex conjugate. In fact, let a1 = tan(θ1/2) and a2 = tan(θ2/2) be two
solutions. Replaced in (2.108), by subtraction we obtain:

a3
1 − a3

2 = −3(a1 − a2), (2.109a)

from which, developing the difference of the cubes and simplifying:

a2
1 + a1a2 + a2

2 = −3 < 0, (2.109b)

that is:
a2
1 + a2

2 < −a1a2. (2.109c)

But this is absurd if a1 and a2 are both real and at least one is different from zero.
In fact, if a1 ≤ a2, it is a2

1 + a2
2 ≥ a2

2 ≥ a1a2. Therefore, all the three solutions are
null, or one is complex and thus there must be its conjugate. Let a1 be the only real
solution. It is θ1 = 2 arctan a1 + 2nπ, which shows that the solution has a unique
value in the interval [0, 2π].

Regarding the velocity on the parabolic orbit, the same considerations made for
the elliptical orbit at the end of Sect. 2.8 apply here too. In this case though, being
e = 1, the normal and transverse components are equal in modulus (Fig. 2.13; see
also Eqs. (2.96) and (2.97)).

2.7.4 Hyperbolic Orbit (E > 0)

The hyperbolic orbit, which occurs when the two points are unbound (E > 0), has a
reduced importance in the classical planetary celestial mechanics. It acquires instead
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full relevance when dealing with meteors, comets, space flight, and the treatment of
gravitational collisions. Equation (2.18a) becomes:

dt =
√

μ

2E
r dr

√

−μ h2

2E − 2 ar + r2
, (2.110)

having used (2.66). Proceeding as in Sect. 2.7.1 for the elliptical orbit, through (2.62)
and some manipulation we obtain:

dt =
√

ah
3

G (m1 + m2)

(
e cosh F − 1

)
d F, (2.111)

which, by direct integration, gives:

t − t◦ =
√

ah
3

G (m1 + m2)

(
e sinh F − F

)
. (2.112)

Equation (2.112) is equivalent to Kepler’s equation (2.81b), and the considerations
made for this latter hold too.

2.8 Keplerian Elements of the Orbit

Starting from Sect. 2.2, we have analyzed the two-body problem in the plane of
motion. Now we need to find the set of parameters to fix this plane with respect to
an arbitrary Cartesian reference frame and the position of the orbit on it. Remember
that, in order to solve the two-body problem, we must find six constants of motion
which are called Keplerian orbital elements.

Three such elements have already been identified: a, e, and t◦. The first two give
size and shape of the orbit (and are equivalent to the total specific energy and to the
angular momentum). The third is simply an origin in the time axis. We call it time of
passage through the pericenter because, owing to the conventions made, at the time
t = t◦ it is θ − θ◦ = 0, i.e., the radius reaches the minimum value; see the generic
expression of the radius vector (2.64).

We are now left with the orientation of the plane of motion, i.e., of the reference
system already introduced on it, relatively to an external concentric inertial Cartesian
reference frame, which requires three additional parameters (Euler angles). Consider
for this purpose an orthonormal reference frame P1[x, y, z] (Fig. 2.14). In the fol-
lowing, the plane xy will be conventionally named reference plane. For heliocentric
orbits, this plane is made usually coincide with the ecliptic plane, and the direction
of x with that of the point� (also called first point of Aries or vernal point), which is
precisely one of the two equinoctial points in which the celestial equator intersects
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Fig. 2.14 Geometrical Keplerian elements. The figure does not show the orbit but only its plane
and the reference plane xy

the ecliptic.24 As usual, we call line of nodes the intersection of the reference plane
with the one containing the orbit, identified in turn by the plane x ′y′ of the reference
system P1 [x ′, y′, z′] where the z′ axis is chosen parallel to the angular momentum
vector (see also Sect. 2.5 and Fig. 2.6). Three angles are enough to orient the system
P1 [x ′, y′, z′] with respect to the reference system P1 [x, y, z]. Usually one chooses
(with conventions to be established in order to avoid ambiguity):

i = ŷ� inclination,
� =̂�� longitude to the ascending node,
ω = ̂�� argument of pericenter.

Note that the argument of pericenter is bound to the angle u = ̂�P2, called argument
of latitude, through the relation:

u = ω + θ, (2.113)

and this justifies the introduction of ω instead of u. Furthermore, the relation (2.113)
shows that ω, θ◦, and u, are not independent. Indeed, the true anomaly θ, measured
relatively to x ′, is θ = θ◦ when t = t◦. Therefore, once u is known, ω is also deter-
mined. Sometimes, the longitude of the pericenter:

π = ω + �. (2.114)

24 In its apparent annual motion, the Sun crosses this point at the spring equinox, passing from the
southern to the northern celestial hemisphere, starting the astronomical spring. It is called the point
of Aries because, in the ancient times when this terminology was created, during the spring equinox
the Sun was in the constellation of Aries. Due to the precession of equinoxes, today the event occurs
when the Sun is in the constellation of Pisces.
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is used in place of the argument of pericenter. This is convenient when the inclination
i tends to zero, that is, when the line of nodes becomes undefined: a situation that
cannot be avoided by a proper choice of the reference system when, for example,
the inclination of the orbit varies over time (but in this case the motion cannot be a
simple Keplerian one).

In conclusion, six Keplerian elements completely identify the orbit in space. The
elements a, e, t◦ are called dimensional, while i ,�, ω (or u) are orientation elements.
They appear in the direction cosines ai j of the relations, easily invertible, between
the two coordinate systems, as shown in the next section.

2.9 Calculation of the Ephemerides

The knowledge of the Keplerian elements makes it possible to calculate a table of
positions, or ephemerides,25 of a body in the context of the hypotheses of this chapter.
As an example, let us consider the case of the elliptical orbit. We first calculate the
average motion from the semi-major axis:

n = 2π

P
=
√

G (m1 + m2)

a3
, (2.115)

from where, knowing the time of the passage at pericenter, t◦, the mean anomaly at
time t is obtained:

M = n (t − t◦). (2.116)

By knowing the eccentricity e, we solve the Kepler equation (cf. Appendix F):

M = E − e sin E, (2.117)

and, through (2.87), we obtain the true anomaly θ. As we will see below, to obtain
the coordinates of the body it is sufficient to known the eccentric anomaly E without
passing through θ. By means of (2.52) we can now calculate the radius r from the
value of the eccentric anomaly E at the time t .

In order to compute the coordinates in a generic reference system (hereafter called
external), we must find the direction cosines (α,β, γ) of the radius vector r which
are related to the orbital elements i , �, and ω. Let us indicate with (x ′, y′, z′) the
coordinates of the pointP2 in the orbital system andwith (x, y, z) those in the external
reference system. From Fig. 2.15 it is apparent that:

25 Word coming from the Greek ′εϕημερ ′ις , meaning ‘daily’. Mesopotamian and pre-Columbian
populations used the ephemerides to record the acts of their sovereigns. Currently the use is purely
scientific and literary. In particular, they are tables that contain values, calculated over a particular
time interval, of various variable astronomical quantities, such as positions.
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ẑ� = π

2
, (2.118a)

x̂� = �, (2.118b)

�̂y = π

2
− �, (2.118c)

̂�P2 = u, (2.118d)

ẑz′ = i. (2.118e)

With that, by applying the cosine formula to suitable spherical triangles of Fig. 2.15,
we have:

triangle x�P2 : α = cos(̂x P2) = cos� cos u − sin � sin u cos i, (2.119a)

triangle y�P2 : β = cos(̂y P2) = sin� cos u + cos� sin u cos i, (2.119b)

triangle z�P2 : γ = cos(̂z P2) = sin u sin i. (2.119c)

Fig. 2.15 Relations between orbital elements and direction cosines
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Thus, the coordinates of the point P2 are:

x = r α = r (cos� cos u − sin � sin u cos i),

y = r β = r (sin� cos u + cos� sin u cos i), (2.120)

z = r γ = r sin u sin i.

The differentiation of (2.120) with respect to time t give the components of the
velocity:

ẋ = h

p

(
αe sin θ + α′(1 + e cos θ)

)
,

ẏ = h

p

(
βe sin θ + β′(1 + e cos θ)

)
,

ż = h

p

(
γe sin θ + γ′(1 + e cos θ)

)
,

(2.121)

where:

α′ = dα

du
,

β′ = dβ

du
, (2.122)

γ′ = dγ

du
.

It is simple to find the direction cosines of orbital system of coordinates using the
expressions (2.119a), (2.119b), (2.119c). The axis x ′ corresponds to the condition θ =
0 (u = ω); the axis y′ to θ = π/2 (u = ω + π/2), and the axis z′ to u = π/2 and to
the change i → i + π/2. Finally, the direction cosines of orbital system ([x ′, y′, z′])
relative to the external system ([x, y, z]) are:

a11 = cos(x̂ x ′) = cos� cosω − sin � sin ω cos i, (2.123a)

a12 = cos(ŷx ′) = sin� cosω + cos� sinω cos i, (2.123b)

a13 = cos(ẑx ′) = sinω sin i, (2.123c)

a21 = cos(x̂ y′) = − cos� sinω − sin� cosω cos i, (2.123d)

a22 = cos(ŷy′) = − sin� sinω + cos� cosω cos i, (2.123e)

a23 = cos(ẑy′) = cosω sin i, (2.123f)

a31 = cos(x̂ z′) = sin� sin i, (2.123g)

a32 = cos(ŷz′) = − cos� sin i, (2.123h)

a33 = cos(ẑz′) = cos i. (2.123i)
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Since the motion is plane, it is enough to use only the two orbital coordinates x ′, y′,
that is: ⎛

⎝
x
y
z

⎞

⎠ =
⎛

⎝
a11

a12

a13

⎞

⎠ x ′ +
⎛

⎝
a21

a22

a23

⎞

⎠ y′. (2.124)

The expressions for x ′(E) and y′(E) are given by (2.51b) and (2.52):

x ′ = a(cos E − e),

y′ = a
√
1 − e2 sin E .

(2.125)

The velocity components:

⎛

⎝
ẋ
ẏ
ż

⎞

⎠ = na2

r

⎡

⎣−
⎛

⎝
a11

a12

a13

⎞

⎠ sin E +
⎛

⎝
a21

a22

a23

⎞

⎠
√
1 − e2 cos E

⎤

⎦ , (2.126)

where we used Kepler equation (2.117) with (2.116) to express Ė = d E/dt through
the mean motion n, are:

ẋ ′ = −aĖ sin E = −a2 n

r
sin E,

ẏ′ = a
√
1 − e2 Ė cos E = a2 n

r

√
1 − e2 cos E .

(2.127)

The formulas above allow us to obtain positions and velocities of the celestial body.
It is important for the observations to obtain ephemeris in terms of right ascension
α and declination δ. In this case we need to make the transition from the ecliptic
[x, y, z] to the equatorial [xe, ye, ze] system by a rotation of an angle ε. The direction
cosines are:

b11 = a11, (2.128a)

b12 = a12 cos ε − a13 sin ε, (2.128b)

b13 = a12 sin ε + a13 cos ε, (2.128c)

b21 = a21, (2.128d)

b22 = a22 cos ε − a23 sin ε, (2.128e)

b23 = a22 sin ε + a23 cos ε . (2.128f)

We also need tomake the transformation fromheliocentric to geocentric coordinates:
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xe = x
 + b11x ′ + b21y′,
ye = y
 + b12x ′ + b22y′, (2.129)

ze = z
 + b13x ′ + b23y′,

where x
, y
, z
 are the coordinates of the Sun at the time t . Finally we obtain right
ascension and declination for the given time:

α = arctan
ye

xe
, (2.130a)

δ = arctan
ze

√
x2

e + y2e
. (2.130b)

Note that the function arctan returns an angle26 in the interval 0 to π, whileα varies in
the range [0, 2π]; this requires us to take into account the signs of both the numerator
and the denominator in (2.130a). These formulas can be used to obtain the position
of asteroids or planets on the celestial sphere at any time t with a good accuracy by
knowing the orbital elements a, e, �, ω, i , t◦ (or M◦), and the coordinates of the Sun
from a catalog.

In the following paragraph we deal with the inverse problem of determining the
orbital elements of a Solar System body through theminimum number of astrometric
observations (projected positions of the body in the sky). This problem has enthralled
illustrious mathematicians and astronomers of the past such as Newton, Laplace, and
Olbers.27 We will consider here only the solution given by Laplace, unfriendly in
practical use but highly educational. For the other famous solution proposed by
Gauss,28 which allowed to pick up Ceres29 a year after its discovery, the reader is

26 Right ascension is given in hours, where 1h = 15◦; but all calculations must be done in degrees
or better radiants.
27 German astronomer and medical doctor, HeinrichWilhelm Olbers (1758–1840) was a discoverer
of comets and small planets, and a convinced supporter of the pluralistic idea. His name is associated
to the famous paradox: in a Euclidean, transparent, homogeneous, infinite, and eternal universe, the
sky should shine like the surface of the Sun. With modern cosmology, the paradox is solved by the
finite age of the universe.
28 The German Carl Fiedrich Gauss (1777–1855) has been one of the greatest mathematicians of
the modern age. Born in a humble family, he was an early genius. In a few years he revolutionized
various fields of mathematics. In spite of a meticulous caution in communicating only results of
which he was absolutely certain (Pauca sed matura), he made innovative and decisive contributions
in the areas of mathematical analysis, number theory, numerical calculation, differential geometry,
geodesy, magnetism, and optics. In 1801 he devised a method to calculate the orbit of the dwarf
planet Ceres based on the astrometric observations of Piazzi, by conceiving the method of the
‘least squares’: a result which in 1807 earned him the directorship of the Göttingen Astronomical
Observatory. He had prestigious students such as Richard Dedekind (1831–1916) and Bernhard
Riemann (1822–1866). He also fostered the career of the young Friedrich Bessel.
29 The small planet Ceres, the first “small planet” to be discovered, was noticed by the director
of the Palermo Observatory, the Theatine father Giuseppe Piazzi (1746–1826), on the first night
of the new year 1801. The astronomer was forced to interrupt the observations early because of
an illness and bad weather conditions, well before he could realize which was the trajectory of the
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referred to [7] and [8]. Themethod of theGermanmathematician is not very intuitive,
but it is the most convenient to be translated into a computer program.

2.10 The Laplace Method for Recovering the Orbital
Elements from Observations

Let us consider a body P of mass m � M
 orbiting about the Sun and assume the
total absence of perturbations so that we can safely use the results of the two-body
problem. Suppose we are able to measure the geocentric positions of P with respect
to a given Cartesian absolute reference frame with origin at the center of the Earth
(to obviate the diurnal parallax). Such measures have become possible owing to
radar techniques,30 that adds the geocentric distance to the traditional astronomical
angular coordinates. It can be proven that radar plus astrometric observations made
at two different epochs completely solve (in general) the problem of determining
the elements of the heliocentric orbit of P , although only formally as the data are
insufficient to account for errors.

More complex is the case in which, as it normally happens, only angular coordi-
nates and no distances are available. Following Laplace, we prove that it is generally
possible to determine the orbital elements of P when its geocentric astrometric posi-
tions are known at three distinct epochs (for details, see Chap.VI in [7] and Chaps.V–
VII in [9]). In this case too, the solution is merely formal becausemeasurement errors
are not accounted.

Let be �i , bi (i = 1, 2, 3) the ecliptical geocentric coordinates31 of P at the epochs
ti . If these measurements were made in a different astronomical coordinate system,
for example in the equatorial system, they can be always transformed to the ecliptical
system, which is the most convenient for our purposes (as the orbit of the Earth also
enters the game and it lies precisely on the ecliptic plane).

In the geocentric reference system of Fig. 2.16, with plane xy containing the
ecliptic, the direction cosines of the line T P joining the Earth T to the point P are:

new body among the stars. When the mysterious object disappeared in the daylight (Piazzi did not
know yet what it was), it seemed to be irremediably lost. But the few observations accumulated
were sufficient to the young Gauss for calculating the orbit. On the basis of his indications, the
baron von Franz Xaver Zach (1754–1832) and Olbers were able to trace Ceres when it reappeared
in the dark night. The detection was announced on December 31, 1801, exactly one year after the
first discovery.
30 Radar transforms distance determinations d in flight-time measurements 2�t of wave packets
shut against a target capable of reflecting them in the direction of the observer. The precision of
the method increases with the compactness of the wave packet (δt turns into δs = cδt) and the
accuracy of 1) the model for the medium which the light beam will pass through (for example, the
Earth atmosphere) for its effects on the speed of the light, and 2) the reconstruction of the target
geometry. Note that the distances cannot be too large since the reflected signal is a factor d4 weaker
when reaching back the observer.
31 Reduced to the Earth center, after correction for diurnal parallax and light aberration.
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Fig. 2.16 Ecliptical
geocentric coordinates

α = cos � cos b,

β = sin � cos b, (2.131)

γ = sin b,

where � and b are the geocentric ecliptic coordinates at the same epoch t . Being
functions of time, the direction cosines can be developed in a power series in a
neighborhood of the epoch t2. That is why we adopt it as the origin of time, placing
t2 = 0; this convention just simplifies the formalism. We have:

α(t) = α(t2) +
∞∑

n=1

(
dnα

dtn

)

t2

(
t − t2
)n

n! = α(0) +
∞∑

n=1

(
dnα

dtn

)

◦

tn

n! , (2.132)

and similar relations for β and γ. If the time interval � = (t3 − t1) is small enough
(compared to period of P), the developments exemplified in (2.132) can be arrested
with some confidence at the terms of the second order. In other words, we assume
that, in the interval t1 ≤ t ≤ t3, it is:

α ≈ α◦ + α̇◦t + α̈◦
t2

2
, (2.133)

where the suffix indicates that the direction cosines and their derivatives are calculated
at epoch t2 = 0. The values of these cosines are immediately derived from the set of
the positional measures at the three epochs, solving the system of three equations of
the type (2.133). In doing so, we deliberately disregard the presence of measurement
errors in � and b. Many more than the three observations, distributed in the interval
−� ≤ t ≤ �, are required to account for the uncertainties on the unknowns in (2.133)
as well as the consequences of the truncation of the power series at the second order.
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Consider now a triplet of ecliptic axes, with origin at the Sun, x-axis towards the
point � (and therefore parallel and concordant to the geocentric reference frame),
and y-axis on the ecliptical plane. Being r the heliocentric distance of P , the com-
ponents of the acceleration of the body relative to the axes of this ecliptic system are
(remember that m is negligible with respect to M
):

ẍ = −G M

x

r3
,

ÿ = −G M

y

r3
, (2.134)

z̈ = −G M

z

r3
.

Similar equations hold for a hypothetical unperturbed motion of the Earth around
the Sun:

ẍ⊕ = −GM

x⊕
R3⊕

,

ÿ⊕ = −GM

y⊕
R3⊕

, (2.135)

z̈⊕ = −GM

z⊕
R3⊕

= 0,

where R⊕ is the distance of the Earth to the Sun and (x⊕, y⊕, z⊕) its components.
Subtracting (2.135) from (2.134) it is:

ẍ − ẍ⊕ = GM

(

x⊕
R3⊕

− x

r3

)

,

ÿ − ÿ⊕ = GM

(

y⊕
R3⊕

− y

r3

)

, (2.136)

z̈ = GM

(

z⊕
R3⊕

− z

r3

)

= −GM

z

r3
.

Being ρ the distance of P from the Earth, we have:

x − x⊕ = ρα,

y − y⊕ = ρ β, (2.137)

z = ρ γ,

which, differentiated twice with respect to time and substituted in (2.136), gives:
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ρ̈α + 2ρ̇α̇ + ρα̈ = GM

(

x⊕
R3⊕

− x⊕ + ρα

r3

)

,

ρ̈β + 2ρ̇β̇ + ρβ̈ = GM

(

y⊕
R3⊕

− y⊕ + ρβ

r3

)

, (2.138)

ρ̈γ + 2ρ̇γ̇ + ργ̈ = −GM

ργ

r3
.

We solve the system of the three linear equations (2.138)with the rule of Cramer32 for
the unknowns ρ, ρ̇, and ρ̈ at the time t2 = 0, remembering that the direction cosines
and their first and second derivatives are known. Meanwhile:

ρ = GM

(

1

R3⊕
− 1

r3

)
D3

D
, (2.139)

for33 D �= 0. The determinants D and D3 are34:

D =

∣
∣
∣
∣
∣
∣
∣
∣
∣

α◦ 2α̇◦ α̈◦ + GM

α◦
r3

β◦ 2β̇◦ β̈◦ + GM

β◦
r3

γ◦ 2γ̇◦ γ̈◦ + GM

γ◦
r3

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣

α◦ α̇◦ α̈◦
β◦ β̇◦ β̈◦
γ◦ γ̇◦ γ̈◦

∣
∣
∣
∣
∣
∣
, (2.140)

D3 = 2

∣
∣
∣
∣
∣
∣

α◦ α̇◦ x⊕
β◦ β̇◦ y⊕
γ◦ γ̇◦ 0

∣
∣
∣
∣
∣
∣
. (2.141)

With reference to the epoch of the second observation, they contain all known quan-
tities. In fact, the heliocentric coordinates x⊕, y⊕, and z⊕(≡ 0), of the Earth at the
time t2 of the second observation, as well as the distance R⊕, can be derived from
ephemeris tables.35 Equation (2.139) still contains two unknowns, r and ρ.

Another equation that contains the same unknowns is derived from the triangle
formed by the Earth, the Sun, and the point P , for which the following relation holds
(Fig. 2.17):

32 Swiss mathematician, Gabriel Cramer (1704–1752) was a pupil of Johann Bernoulli. He dealt
with algebraic curves and determinants. He discovered the rule for the solutions of systems of n
linear equations in n unknowns, which generalizes that of the Scotsman Colin Maclaurin.
33 D = 0 represents an ‘unfortunate’ set of data: the three observations are contained in the same
great circle. Then a new astrometric set is needed, choosing different epochs.
34 These two properties of determinants are useful to understand the passage.

1. Themultiplication by t of all elements of any row (or column) of amatrix changes the determinant

by the same factor t . For instance:

∣
∣
∣
∣
∣

ta tb

c d

∣
∣
∣
∣
∣
= t

∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
.

2. The determinant acts as a linear function on the rows of the matrix:
∣
∣
∣
∣
∣

a + a′ b + b′

c d

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

a b

c d

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

a′ b′

c d

∣
∣
∣
∣
∣
.
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Fig. 2.17 Graphical
representation of the
elongation E

Fig. 2.18 Elongation angle:
calculation

r2 = R2
⊕ + ρ2 − 2R⊕ ρ cos E, (2.142)

where the angle E , named elongation36 of P , measures the angular distance of P
from the Sun with respect to a terrestrial observer (obviously corrected for diurnal
parallax). It can be determined by means of geometric considerations based on the
measure of �2 and b2, or can be measured directly at t2. Geometrically it results
(Fig. 2.18):

cos E = cos b2 cos
(
�2 − �
(t2)

)
, (2.143)

where �
(t2) is the ecliptic longitude of the Sun at t2, tabulated in the almanacs. From
(2.139) to (2.142) we therefore obtain the geocentric and heliocentric distances, ρ
and r , of P at the epoch of the second observation.

35 See, for example, The Astronomical Almanac, published by the US Naval Observatory and by the
Nautical Almanac Office of Her British Majesty, containing the ephemerides of the Solar System
and a catalog of selected star and extragalactic objects.
36 Not to be confused with the eccentric anomaly having the same symbol.



2.10 The Laplace Method for Recovering the Orbital Elements from Observations 71

The solution of the system of two equations mentioned above is not trivial. It leads
to an algebraic equation of 8-th degree in r/R⊕, known as the Lagrange equation.
Rather than trying to solve it, we take a different approach. Indicated with E p the
relative elongation for an observer in P , from the triangle of Fig. 2.17 we get:

R⊕
sin E p

= r

sin E
= ρ

sin(E + E p)
, (2.144)

from where, through (2.139), it is:

R⊕ sin E cos E p +
(

R⊕ cos E − GM

A

R3⊕

)

sin E p =

= −GM

A

R3⊕

sin4 E p

sin3 E
,

(2.145)

with A = D3/D. Let then be:

N sinm = R⊕ sin E,

N cosm = R⊕ cos E − GM

A

R3⊕
, (2.146)

M = −N
R3⊕
A

1

GM

sin3 E .

The first two equations, with the second terms consisting of known quantities, show
that N and m are uniquely determined once the sign of N is fixed. We choose the
latter so that M > 0. By replacing (2.146) in (2.145) and simplifying, we have:

sin4 E p = M sin
(
E p + m

)
. (2.147)

This equation, where M and m are known, can be solved for E p by successive
approximations. For example, if E◦

p is an approximate value, it is easy to prove that,
at the first order, the correction �E◦

p = E p − E◦
p is given by:

�E◦
p = − sin4 E◦

p − M sin
(
E◦

p + m
)

4 sin3 E◦
p cos E◦

p − M cos
(
E◦

p + m
) . (2.148)

Since the position of the terrestrial observer must satisfy the set of equations, the
relative solution E p = π − E must be discarded. The real solutions of (2.147) are
the intersections of the curves y1 = sin4 E p, and y2 = M sin

(
E p + m

)
. Generally

they are three (see Fig. 2.19); when there is only one, the problem related to P is not
solvable as this solution corresponds to the terrestrial observer.

Consider the case inwhich A = D3/D > 0. Then from (2.142) r > R⊕ and, since
sin E ≥ 0, then N < 0 and, from the first of the (2.146), π < m < 2π. In practice,
however, if we want 3 solutions, it must be (3/2)π < m < 2π. If instead A < 0, it
must be 0 < m < π/2.
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Fig. 2.19 Graphical solution of equation (2.147). We have placed y1 = sin4 E p (red line). The
other curves (blue and black lines) correspond to the right side of equation (2.147) for various
combinations of the parameters: M = 0.5 (left) and M = 1.0 (right), and m = 0,π/2,π

Incidentally, we observe that Eq. (2.139) contains in nuce the Lambert37 theorem:
if, at the epoch of observation, a body is found to be farther away from the Sun than
the Earth, its apparent trajectory on the celestial sphere will be convex towards the
Sun; in the opposite case, the apparent trajectory will be concave towards the Sun.
From this statement we deduce that the singular case D = 0 occurs when, at the
epoch t2, the apparent trajectory of P has an inflection.

Solving the system (2.138) with respect to the unknown ρ̇, we obtain:

ρ̇ = GM

(

1

R3⊕
− 1

r3

)
D2

D
, (2.149)

where the determinant D2 is:

D2 =

∣
∣
∣
∣
∣
∣
∣
∣
∣

α◦ x⊕ α̈◦ + GM

α◦
r3

β◦ y⊕ β̈◦ + GM

β◦
r3

γ◦ 0 γ̈◦ + GM

γ◦
r3

∣
∣
∣
∣
∣
∣
∣
∣
∣

= 2

∣
∣
∣
∣
∣
∣

α◦ x⊕ α̈◦
β◦ y⊕ β̈◦
γ◦ 0 γ̈◦

∣
∣
∣
∣
∣
∣
. (2.150)

We are now ready to find the component of the heliocentric velocity of P . In fact,
by deriving the (2.137) with respect to time, we have:

37 A contemporary of Euler, Johann Heinrich Lambert (1728–1777) was a Swiss-French polymath
who made important contributions in physics, mathematics, cartography, and philosophy. He was
a pioneer of non-Euclidean geometry.
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ẋ = ẋ⊕ + ρ̇α◦ + ρα̇◦,
ẏ = ẏ⊕ + ρ̇β◦ + ρβ̇◦, (2.151)

ż = ρ̇γ◦ + ργ̇◦,

where all quantities at the right hand side have been calculated for t2 = 0 or can be
found in almanacs. Recalling (2.68), from the (2.151) it is:

ẋ2 + ẏ2 + ż2 = 2 GM

(
1

r
− 1

2 a

)

. (2.152)

Since r is already known, this relation allows us determine the semi-major axis a.
Remembering the considerations in Sect. 2.7, if a is finite and positive the orbit of
the point P is elliptical, if a = +∞ it is parabolic,38 and finally, if a is finite and
negative it is hyperbolic. Whether the orbit is elliptical, the Eq. (2.83):

1

T
=
√

GM

4π2 a3

, (2.153)

provides the period T (a meaningless quantity for open orbits).
Consider now a generic plane in the heliocentric ecliptic system, imposing the

condition that it contains the orbit of P . This implies that this plane contains also
the origin of the coordinate system (where the Sun is); therefore its equation writes:
λ x + μ y + z = 0. The intersection with the ecliptical plane, z = 0, generates the
line of nodes, y = −(λ/μ) x . Its angular coefficient corresponds to the trigonometric
tangent of the angle formed by the line of nodes with the x-axis, which is directed
towards the point �. Therefore:

tan� = −λ

μ
. (2.154)

Moreover, the third of the direction cosines of the vector N normal to the plane
(2.143):

38 You understand from here that, in a random sample of orbits, the probability of a true parabolic
orbit is just zero. This consideration also applies to the simple models of the universe developed in
the third decade of 1900 by the Russian Alexandr Friedman (1888-1925) on the basis of a dynamical
solution of the equations of general relativity. Three are the possible results, according to the sign
of the curvature k, where k = +1 is valid for a closed universe with spherical geometry, k = −1
for an open universe with hyperbolic geometry. The open Euclidean universe corresponds to k = 0,
making this solution very unlikely from the statistical point of view, while observations seem to
prove that the space is actually flat. In the Newtonian case, this corresponds to negative, positive,
or zero energy values.
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cos N̂ x = λ
√

λ2 + μ2 + 1
,

cos N̂ y = μ
√

λ2 + μ2 + 1
, (2.155)

cos N̂ z = 1
√

λ2 + μ2 + 1
,

is obviously the cosine of the inclination angle i :

cos i = 1
√

λ2 + μ2 + 1
. (2.156)

By determining λ and μ as functions of the orbital elements � and i through (2.154)
and (2.156), the direction cosines of N are:

cos N̂ x = sin i sin�,

cos N̂ y = − sin i cos�, (2.157)

cos N̂ z = cos i.

Now observe that the orbital angular momentum per unit mass of P is constant
and directed as N. By indicating its module with h, the components along the three
heliocentric ecliptic axes are:

yż − z ẏ = h sin i sin�,

zẋ − x ż = −h sin i cos�, (2.158)

x ẏ − yẋ = h cos i.

Squaring and summing, it is:

(yż − z ẏ)2 + (zẋ − x ż)2 + (x ẏ − yẋ)2 = h2, (2.159)

and therefore, knowing the components of the distance andof the heliocentric velocity
of P at the epoch t2, the module of the angular momentum per unit mass is found.
But, from the relation (2.65), it is: h2 = GM
a (1 − e2), which provides the value of
the eccentricity e, using the already calculated value of a. Furthermore, Eq. (2.158),
being their left-hand sides known, allows us to calculate the longitude at the node
� and the inclination i . Not surprisingly, the number of equations is larger than the
number of unknowns. The overabundance is needed to remove the ambiguity on the
sign of the main values. This is why, in a rotation of axes, the parameters are two
(Euler) angles only, but the independent equations are three.

Now the argument of pericenter ω must be found. To this end, we indicate with
θ2 the true anomaly of P at the epoch of the second observation, referred to the focal
axis. This is provided by (2.64) where we place θ◦ = 0. The ecliptic latitude of P
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Fig. 2.20 The relation
between ecliptic latitude b
and true anomaly ω + θ

can be expressed by the equations (Fig. 2.20):

sin b2 = sin i sin(ω + θ2),

tan(�2 − �) = cos i tan(ω + θ2),
(2.160)

which provide ω.
Finally, to obtain the epoch t◦ of the passage through the pericenter, we just use

the relation between true anomaly and time. For example, via (2.87) we calculate the
eccentric anomaly E2 at t = t2 for the elliptical orbit, entering with the value θ2 of
the true anomaly. Then, t◦ is readily given by (2.84).

At the end of this paragraph, it is worth emphasizing once more that the method
suffers from two serious limitations: it does not account for the measurement errors,
and disregards any possible perturbations to the pure Keplerian motion of the two
massive points. The first limitation (which includes the uncertainty introduced in
the truncation of the series (2.117)) is removed to a large extent by increasing the
number of astrometric determinations. The system of equations (2.133) will then be
over-abundant and must be solved by proper interpolation methods (for example,
the least square method; see AppendixO.1). Actually, when all computations were
made by hand, a variational approach to the determination of orbital elements was
developed to add a new observation to an already found solution (called preliminary)
without repeating from the beginning the long and tedious procedure on the complete
set of data. The second uncertainty is removed by applying correctly the theory of
planetary perturbations to the preliminary determined orbit.

As an application of what we learned in this chapter, a graphical technique to
determine the orbital elements of binary stellar systems, widely used in the second
half of the 19-th century, is illustrated in Appendix J. The results so far obtained are
also useful for some simple considerations on space flight dynamics (for an in-depth
study, cf. [10]).
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2.11 Application to Ballistics and Space Flight

Consider an object with a negligible mass if compared to the Earth, m P � M⊕, that
we will call probe for convenience. It might be, for instance, a missile, or an artificial
satellite, or a deep space ship.We also assume that the Earth is spherically symmetric
(which implies that, for r ≥ R⊕, its gravitational field is the same of a point-likemass
M⊕ placed in its gravity center), and free of superficial roughness (smooth) and any
atmosphere (to remain in the conditions of conservation of mechanical energy).

From (2.73), with M⊕ = 5.974 × 1027 g and R⊕ = 6.373 × 108 cm, the escape
velocity of probe is:

Ve =
√
2G M⊕

R⊕
� 11.2 km s−1, (2.161)

and the velocity required to keep it in a hypothetical circular orbit of radius R⊕ (i.e.,
in an orbit shaving the surface of the Earth) is:

Vg =
√

G M⊕
R⊕

= Ve√
2

� 7.9 km s−1. (2.162)

Let us now determine the initial velocity Vi to be given (impulsively) to probe in order
to insert it in an elliptical trajectory with apogee at an altitude h, i.e., at a distance
h + R⊕ from the Earth center which, for the first Kepler law, is also the focus of the

orbit. Since in (2.68) it is r = R⊕ and a(1 + e) = R⊕ + h, i.e., a = R⊕ + h

1 + e
, then:

Vi =
√

G M⊕
(

2

R⊕
− 1 + e

R⊕ + h

)

= Ve

√

1 − 1 + e

2(1 + h/R⊕)
. (2.163)

Therefore, once the altitude h is assigned, the initial velocity of probe depends on
the orbital eccentricity e.

Let us now ask what is the least expensive trajectory, in terms of work done (and
therefore of fuel used for the propulsion), to transfer a probe from a circular Earth
orbit of radius r1 to a coplanar one of radius r2. The answer was found in 1925 by
Walter Hohmann.39 It is, at least in the cases in which r2/r1 ∼< 12, an elliptical orbit
tangent to both circular orbits (Fig. 2.21).

Consider then the transfer orbit in the gravitational field of a body of mass M
from the orbit with radius r1 to the coplanar orbit r2. The velocity of probe is equal

39 The German engineer Walter Hohmann (1880-1945) was a pioneer of astronautics and a leading
member in the Verein für Raumschiffahrt, an amateur Society for Space Travel born in Germany
at the end of the 1920s, of which Wernher von Braun (1912-1977) was also an influential figure.
With the advent of Nazism he decided to withdraw from rockets in order not to encourage their use
as weapons, unlike von Braun who instead successfully developed the lethal V2 (Aggregat 4) at
Peenemünde.
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to the circular velocity at the radius r1:

(V1)c =
√

G M

r1
. (2.164)

Let us change impulsively this velocity to the value (Vi )e so that probe settles on an
elliptical orbit with an apogee in r2, with a major axis a = (r1 + r2)/2:

(V1)e =
√

2G M

(
1

r1
− 1

r1 + r2

)

=
√

G M

r1

√
2 r2

r1 + r2
. (2.165)

Thus, the impulse must produce a velocity variation:

�V1 = (V1)e − (V1)c =
√

G M

r1

(√
2 r2

r1 + r2
− 1

)

. (2.166)

Obviously, for the transfer from an outer to an inner orbit, the impulse must produce
�V1 = (V1)c − (V1)e. When probe reaches its apogee, due to the conservation of
momentum (Kepler’s second law), the velocity on the elliptical orbit is reduced by a
factor r1/r2. So:

(V2)e = (V1)e
r1
r2

=
√

G M

r2

√
2 r1

r1 + r2
. (2.167)

The impulse to be given toprobe in order to reach the orbit r2 is�V2 = (V2)c − (V2)e:

�V2 =
√

G M

r2

(

1 −
√

2 r1
r1 + r2

)

. (2.168)

For the transfer from outer to inner orbits, it must be: �V2 = (V2)e − (V2)c.
The time t needed to complete the transfer is half of the period P of the elliptical

orbit. It is provided by the Eq. (2.89) or by the third Kepler law:

�t = π

√

1

G M

(
r1 + r2

2

)3

. (2.169)

Consider the example of a Hohmann transfer from an altitude of h = 300 km above
the Earth surface to a circular orbit at geosynchronous40 altitude. In this case,
M = M⊕, r1 = R⊕ + h � 6, 670 km, and r2 = rGSO . The radius of the (circular)

40 The orbit of a satellite around Earth is said to be geosynchronous (GSO) if its period equals the
sidereal day Ps = 23h 56m 4s = 86, 164.1 s, i.e., the ‘average’ angular velocity of the probe is the
same as the diurnal rotation of the Earth.
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Fig. 2.21 Hohmann orbit
(black curve) for a transfer
from Earth orbit to Mars
orbit. Open circles mark the
positions of the Earth (blue)
and Mars (red) at the time of
launch; solid circles show
the positions of two planets
at arrival time

V1

V2

geosynchronous orbit is obtained from the third Kepler’s law:

rGSO =
(

P2
s G M⊕
4π2

)1/3

= 42, 164 km, (2.170)

where Ps is the sidereal day. The circular velocities are (V1)c = 7.73 km s−1 and
(V2)c = 3.07 km s−1. The impulse at the altitude h gives �V1 = 2.43 km s−1. At
the geosynchronous orbit it is �V2 = 1.47 km s−1, and the total velocity change is
�V = 3.9 km s−1.

Using the above formula we can calculate the change of velocities needed for a
transfer between two planets. As an example, we want to fly from the Earth to Mars.
In this case, we use M = M
, r1 = r⊕, and r2 = r♂ in (2.164) and (2.169). The
real travel to other planets can be fairly complicated. In general, the travel can be
subdivided in three stages:

1. the motion in the sphere of influence41 (SOI) of the Earth, where the primary
gravitational source is our planet;

2. from the SOI of the Earth to the SOI of Mars, where the primary gravitational
source is the Sun;

3. the motion in the SOI of Mars.

We will consider the second stage of the flight by a Hohmann orbit, neglecting the
sizes of the SOIs of planets in comparison with the interplanetary distance to be

41 A sphere of influence is a spheroidal region surrounding a celestial body where it exerts the
primary gravitational influence on an object with negligible mass; see also Appendix I.
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Fig. 2.22 Hohmann transfer
orbit efficiency. Graphical
representation of
Eq. (2.173). Note that
R = r2/r1 ≥ 1

R
m
ax

15
.5
8

Hohmann orbit

0 20 40 60 80
0.0

0.1

0.2

0.3

0.4

0.5

0.6

r2 r1

V
V
1

covered. To move from Earth to Mars we have to choose the proper configuration of
the planets: the position of the Earth must coincide with a pericenter of the Hohmann
orbit and the position of the Mars with the apocenter of the transfer orbit (Fig. 2.21).
The period of opposition can be found from the difference of the angular velocities
of the Earth (ω⊕) and Mars (ω♂): ωopp = ω⊕ − ω♂. So, we obtain:

Topp = T⊕ T♂
T♂ − T⊕

, (2.171)

and Topp = 2.13 year. The spacecraft has to be lunched when the angle between
the positions of Mars at the start and at the end of the travel is �θ = 135.66◦
(Fig. 2.21). The impulses given to leave the Earth orbit and at the Mars orbit are
�V1 = 2.94 km s−1 and �V2 = 2.65 km s−1, and the total change of velocity is
�V = 5.59 km s−1. The flight time along theHohmann orbit can be easily expressed
through the orbital period of the Earth:

�t = 1

4
√
2

(
1 + r♂

1 AU

)3/2
yr. (2.172)

Since the distance to Mars is r♂ = 1.5 AU, we obtain �t � 0.7 years, that is a little
less than 8.5 months.

The ratio �V/V1 as a function of relative distance R = r2/r1 gives us the effi-
ciency of this transfer orbit (Fig. 2.22):

�V

V1
=
√

2 R

1 + R
− 1 +
√

1

R

[

1 −
√

2

1 + R

]

. (2.173)

The transfer is more effective for the nearest orbits and for the most distant. The
function in (2.173) has the maximum at Rmax = 15.58; in other words, the worst
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performance of the Hohmann orbit is to pass to an upper orbit that is 15.58 times
larger than the starting orbit. In this case, a bi-elliptical orbit can be used to reach
the large distance.

The relation (2.173), once again adapted to Solar orbits, shows that in order to
launch a vehicle up to Jupiter (which is about 5 AU from the Sun), the impulse
must generate an initial velocity of �V = 14.3 km s−1, equal to 48% of V⊕. Much
higher is instead the impulse needed to send a vehicle to the Sun, while the latter is
the central attractor. This apparent paradox becomes clear if we think that the orbit
required to impact the Sun is an ellipse with a very high flattening, with a semi-major
axis practically equal to half of the Astronomical Unit. At the time of launch, the
body is found at the aphelion of this orbit, where its (tangential) speed should be
practically null. Instead the body has the same orbital speed of the Earth, which must
be zeroed with a launch ‘against the stream’ with velocity equal and opposite to that
of the planet: 29.8 km s−1.
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Chapter 3
The Three-Body Problem

Wolfgang Pauli

I don’t mind your thinking slowly; I mind your publishing faster
than you think.

The simplest generalization of the two-body problem is to introduce an additional
third body. So doing generates the so-called three-body problem, which, while not
generally solvable, is still a good tool for dealing with more realistic situations
than the two-body approach alone. For instance, a geostationary satellite1 turning in
an Earth orbit feels also the gravitational attraction of the Moon, which cannot be
overlooked if a better level of accuracy is pursued than one part on 104 on the acting
force. Similarly, to analyze the simple motion of the small bodies in the asteroid belt
(Fig. 3.1), it is inevitable to take into account, besides the Sun, the interaction with
Jupiter as well. As we know, the general solution of the three-body problem requires
the knowledge of 18 first integrals. The fact that we are limited by conservation laws
to a smaller number requires us to follow paths other than the direct approach.

In this chapterwewill address the problemof three bodies, focusing on attempts to
solve it in particular cases as, for instance, when one of the three masses is negligible
compared to the other two. In fact, not even this restrictive hypothesis is enough for us
to solve the problem exactly. However, we can constrain the dynamical evolution of
the system by identifying regions where the motion cannot take place, thus shedding
light on some real astrophysical phenomena: for example, on the peculiar dynamical
coupling among Sun, Jupiter, and the asteroid families of the Trojans and Greeks

1 A geostationary orbit is a circular geosynchronous equatorial orbit; its geocentric radius (2.170)
is such that the period of revolution, Pgst , of a massless particle is equal to a sidereal day Ps (see
also Footnote 40). It is a special case of geosynchronous orbit, whose only constraint is Pgsy = Ps .
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Fig. 3.1 Plot of the asteroid belt (white) superimposed on the planetary orbits out to that of Jupiter.
Also shown (green) are the families of asteroids named Trojans and Greeks. Cf. Sect. 3.5.2 to
understand why on average they form equilateral triangles with Jupiter and the Sun, clustering
around the Lagrangian points L4 and L5 (Sect. 3.4). The asteroids of theHilda family (orange) travel
in a 3 :2 orbital resonance such that they reach aphelion (where Jupiter’s perturbation is greatest)
in a position diametrically opposite to the giant planet, or at an angular distance of Angle60 from
it (i.e., again in L3, L4, and L5). Picture from Wikipedia

(Fig. 3.1). The latter are small planets2 preceding (Trojans) and following (Greeks)
the giant planet in its orbit around the Sun. They form an angle of Angle60 with
Jupiter and the Sun and resist well to planetary perturbations (in other words their
positions are quasi-stable).

In Sect. 3.1 we will consider a class of simple solutions of the three-body problem
which are called stationary because the configuration assumed by the three massive

2 No less than 2350 Trojans are known (this is the common name adopted for both families), equally
distributed between the two fields of Greeks and Trojans. The tradition of calling these objects with
the names of the Iliad heroes (up to availability) dates back to the German astronomer Max Wolf
(1863–1932), pioneer of astrophotography. In 1906 he discovered an asteroid and called it Achilles;
it was the first known member of a rich family. Before the rule of drawing on Homeric characters
was clearly established, assigning Greek names to bodies following Jupiter and Trojan names to
those preceding the planet, there was time to generate some historical mistakes. Thus the Greek
Patroclus, discovered in 1906 by August Kopff (1882–1960), came to find itself in the Trojan
camp, and the Trojan hero Hektor, also discovered by Kopff in 1907, in the Greek one. Today
the term Trojans indicates also those asteroids anchored to the Lagrangian points L4 and L5 (cf.
Sect. 3.5.3) pertaining to pairs of massive bodies such as Sun-Earth, Sun-Venus, Sun-Mars, and
even Earth-Moon (dust, in this case).
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points remains similar to itself during motion. In Sect. 3.1.1 the general problem will
be restricted to the case, very useful in real astrophysical situations, in which one of
the three bodies has a negligible mass. We will discover how it is possible to find
a motion integral, named after Jacobi3 and described in Sect. 3.1.2, from which the
Hill4 surfaces descend; they limit the motion of the massless body to certain regions
of space.Wewill also derive the dynamical equilibrium points named after Lagrange,
both under oversimplified assumptions and in the most general form of stationary
solutions. Stability of these equilibrium points against perturbations will be assessed
in Sect. 3.5. The remaining of this chapter will be devoted to study the variations of
the orbital elements of a system of two bodies, one of which with negligible mass,
under an external perturbation.

3.1 Stationary Solutions

Wewant to find those special configurations of three bodies that, under suitable initial
conditions, are capable of producing stationary solutions. In other words, we pretend
that the geometry of the system changes over time at most by similarity.5 Found
between 1765 and 1772 byEuler andLagrange6 (see also Sect. 3.1.3), these solutions,
although apparently artificial, have proven to be of great practical importance.

3 Carl Jacobi (1804–1851) was a German mathematician and lecturer. The son of a banker, he was
the first Jew to be appointed a university professor in Germany. From 1829 he thought mathematics
in Königsberg (the city of Immanuel Kant, now named Kaliningrad), where he had as a student
Gustav Kirchhoff (1824–1887). He held this position until 1842 when, for physical collapse from
overwork, he spent some time in Italy to rest. Returned to Germany, he moved to Berlin, where he
remained until his death, due to a smallpox infection. His fundamental contributions include elliptic
functions, dynamics, differential equations, determinants, and number theory.
4 George William Hill (1838–1914): American mathematician and astronomer. Employee at the
Nautical Almanac Office, he dealt with the problems of three and even four bodies in order to
improve the calculations of the Lunar and planetary orbits.
5 Note the difference between stationary and static; a configuration is stationary if there is a time-
dependent reference frame where it looks static.
6 Giuseppe Lodovico Lagrangia (1736–1813), known with his French name of Joseph-Louis
Lagrange, was one of the most influential and productive mathematicians of the 18th century,
certainly the most elegant. He was born in Turin to a family of French roots, impoverished by
unfortunate speculation. The privations of his early life made the scientist say later that if he had
been born rich, he probably would not have approachedmathematics. Lagrange started his scientific
career in Turin. In 1766, at the suggestion of Euler and d’Alembert, he was called by Frederick II
of Prussia to succeed Euler as president of the Berlin Academy. In 1787 Louis XVI invited him to
move to France to direct the mathematics section of the Académie des Sciences. He remained in
Paris until his death, passing unscathed through the Revolution. Napoleon covered himwith honors.
Lagrange’s contributions were in the fields of number theory, variation calculus, and differential
equations. He was also a pioneer in group theory and, in astronomy, he worked on lunar librations
and planetary motions, that is pure celestial mechanics. But his fundamental legacy is analytic
mechanics.
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Fig. 3.2 Stationary solution
for the motion of three
bodies of equal mass placed
at the vertexes of an
equilateral triangle with
properly-chosen identical
initial velocities orthogonal
to their vector radii

We start by proving (in an objectively unorthodox way) the existence of at least
one stationary solution. For this purpose we place three massive points Pi , with
equal massesmi = m, at the vertexes of an equilateral triangle whose distances from
the barycenter B are R (Fig. 3.2). As initial conditions, we choose three velocities
vi which are equal in modulus and perpendicular to the corresponding barycentric
vector radii, orienting them so that the directions of the three angular momentum
vectors coincide. It is easy to be convinced that, at the beginning of the motion, the
point Pi feels the combined force 2

(
fi j
)
‖ exerted by the other two points j and k as

if emanating from the barycenter B. Since:

2| (fi j
)
‖ | = G√

3

m2

R2
, (3.1)

if we make it that:

|v| =
√

G√
3

m

R
, (3.2)

the point Pi is forced to move (instantaneously) around B on a circle with radius R.
Since this behavior is the same for the other two points Pj and Pk , the instantaneous
motion of the system is rigid and plane, with constant angular velocity:

ω =
√

G√
3

m

R3
. (3.3)
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In doing so, moment by moment a stationary movement is built.
Let us now ask what are the general conditions for the existence of stationary

solutions for a system of three points Pi without applying any restriction to values of
the masses mi and to the shape of the initial configuration. Because these solutions
concern only planar motions (cf. Appendix K for the proof), we introduce an inertial
reference systemwith axes x and y on the invariable plane containing the three points
and the origin on the center of gravity B. The equations of motion for the three points
are:

ẍi = −Gm j
xi − x j

r3i j
− Gmk

xi − xk
r3ik

(i �= j �=k= 1, 2, 3). (3.4)

ÿi = −Gm j
yi − y j
r3i j

− Gmk
yi − yk
r3ik

The condition of stationarity is expressed by imposing that the law of variation with
time of the mutual distances ri j = |−−→Pi Pj | is the same for all pairs of points, i.e., it is
independent of the indexes:

ri j (t) = ρ(t) r◦
i j (i �= j = 1, 2, 3), (3.5)

where r◦
i j is themodulus of the vector

−−→
Pi Pj at the conventional initial epoch t = 0.The

condition expressed by (3.5) implies that a similar law also applies to the barycentric
distances ri of each of the three points:

ri (t) = ρ(t) r◦
i (i = 1, 2, 3). (3.6)

The function ρ(t) can be thought as a scaling factor. Finally, the self-similarity
conditions require that the position angle φi (t) of each point Pi , which is the angle
between the positive semi-axis x and the vector ri counted in the direction of motion,
varies over time with a law independent of the chosen point:

ϕi (t) = ϕ◦
i + θ(t) (i = 1, 2, 3), (3.7)

where ϕ◦
i is again the value of the position angle at t = 0. Using the conditions (3.5),

(3.6), and (3.7), the coordinates of the point Pi can be written as:

xi (t) = ri (t) cos
[
ϕi (t)
] = r◦

i ρ(t) cos
[
ϕ◦
i + θ(t)

] =
=
{
x◦
i cos

[
θ(t)
]− y◦

i sin
[
θ(t)
]}

ρ(t), (3.8)

yi (t) = ri (t) sin
[
ϕi (t)
] = r◦

i ρ(t) sin
[
ϕ◦
i + θ(t)

] =
=
{
x◦
i sin
[
θ(t)
]+ y◦

i cos
[
θ(t)
]}

ρ(t).
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By replacing them in the equations of motion (3.4), we obtain a system of 6 second-
order differential equations in ρ(t) and θ(t), whose over-abundance provides the
conditions for the existence of the stationary solutions. Since these are rather com-
plicated equations, it is desirable to simplify them first. To this purpose we add to the
first of (3.4), already modified by inserting (3.8) and multiplied by cos θ , the second
multiplied by sin θ , and again we add to the first, multiplied by − sin θ , the second
multiplied by cos θ (i.e., we apply the usual rotation matrix). After some reductions,
we obtain three pairs of condition equations for (i �= j �=k= 1, 2, 3):

x◦
i ρ̈ − 2y◦

i ρ̇ θ̇ − x◦
i ρ θ̇2 − y◦

i ρ θ̈ = −
(

m j

x◦
i − x◦

j

(r◦
i j )

3
+ mk

x◦
i − x◦

k

(r◦
ik)

3

)
G

ρ2
,

y◦
i ρ̈ + 2x◦

i ρ̇ θ̇ − y◦
i ρ θ̇2 + x◦

i ρ θ̈ = −
(

m j

y◦
i − y◦

j

(r◦
i j )

3
+ mk

y◦
i − y◦

k

(r◦
ik)

3

)
G

ρ2
.

(3.9)

By placing:

ρ2 dθ

dt
= ψ, (3.10)

through time derivation and squaring, we have:

2ρ̇θ̇ + ρθ̈ = 1

ρ
ψ̇,

ρθ̇2 = ψ2

ρ3
,

(3.11)

with which the (3.9) assume the compact form:

ρ̈ − y◦
i

x◦
i

1

ρ
ψ̇ − ψ2

ρ3
= − Aix

x◦
i

G

ρ2
,

ρ̈ + x◦
i

y◦
i

1

ρ
ψ̇ − ψ2

ρ3
= − Aiy

y◦
i

G

ρ2
,

(3.12)

having placed:

Aix = m j

x◦
i − x◦

j

(r◦
i j )

3
+ mk

x◦
i − x◦

k

(r◦
ik)

3

(i �= j �=k= 1, 2, 3). (3.13)

Aiy = m j

y◦
i − y◦

j

(r◦
i j )

3
+ mk

y◦
i − y◦

k

(r◦
ik)

3

The constants Aix and Aiy in (3.13) are proportional to the components of the forces
F◦
i j and F◦

ik acting on the ith body at the initial epoch. In particular, it is:
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Aix = (F◦
i j )x + (F◦

ik)x

G mi

(i �= j �=k= 1, 2, 3). (3.14)

Aiy = (F◦
i j )y + (F◦

ik)y

G mi

Note that it is always possible to choose the orientation of the axes in such a way
that x◦

i �= 0 and y◦
i �= 0, unless the center of gravity falls at one of the bodies.

In short, a necessary (but not sufficient) condition for the existence of dynamical
solutions preserving the relations of similitude among the mutual distances of the
three bodies is that all the six equations (3.12) are satisfied. But they contain only two
unknown functions, ρ and ψ , which respectively provide, through (3.10), size and
orientation of the system of three points. Each pair of equations (3.12) is sufficient
to define ρ and ψ when the initial conditions are specified. It is however necessary
that all the three pairs provide the same result for the solution of the over-abundant
system (3.12). Subtracting from the first equation of the system (3.12), with index i ,
the second equation with index j and doing the same for the second equation, and
then repeating the operation with the equations having indexes i and k, two pairs of
new equations are obtained:

(
y◦
i

x◦
i

− y◦
j

x◦
j

)

ψ̇ =
(
Aix

x◦
i

− A jx

x◦
j

)
G

ρ

( j �= i = 2, 3), (3.15)
(
x◦
j

y◦
j

− x◦
i

y◦
i

)

ψ̇ =
(
Aiy

y◦
i

− A jy

y◦
j

)
G

ρ

which, if identically satisfied, reduce the system (3.12) to two equations in two
unknown functions (i.e., the indexes reduce to one). Since ψ̇ and ρ are independent,
to identically satisfy (3.15) it is necessary that both terms vanish in each equation.
The left-hand side term cancels if either:

y◦
1

x◦
1

= y◦
2

x◦
2

= y◦
3

x◦
3

, (3.16a)

or:
dψ

dt
= 0. (3.16b)

We will see later that the first condition necessarily entails the second, but not vice
versa. The second term cancels if:
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Aix

x◦
i

= A jx

x◦
j

= const1

(i �= j = 1, 2), (3.17)
Aiy

y◦
i

= A jy

y◦
j

= const2

that is, given the independence of x◦
i and y◦

i (i=1, 2, 3), if the constants Aix/x◦
i and

Aiy/y◦
i are independent of the index. We can also see that these constants must be

equal to each other observing how (3.12) are reduced when (3.16a) or (3.16b) are
verified. So:

Aix

x◦
i

= n2 ⇒ m j

x◦
i − x◦

j

(r◦
i j )

3
+ mk

x◦
i − x◦

k

(r◦
ik)

3
= n2x◦

i ,

Aiy

y◦
i

= n2 ⇒ m j

y◦
i − y◦

j

(r◦
i j )

3
+ mk

y◦
i − y◦

k

(r◦
ik)

3
= n2y◦

i ,

(3.18)

where n2 is an arbitrary constant, necessarily positive.7

In conclusion, the necessary condition for the system (3.12) to give a solution is
that, together with (3.18), either the (3.16a) or the (3.16b) are verified. We will now
prove that these conditions provide all and alone the stationary solutions.

3.1.1 Collinear Solutions

Assume that condition (3.16a) is satisfied. It requires that, at the epoch t = 0, the three
massive points are on the same line, whichmust obviously also contain the barycenter
B. Since we constrained the system not to change its configuration over time, the
alignment must remain indefinitely. In this case, the resulting of the forces acting on
each point Pi is constantly directed towards the common center of mass, which is
also a fixed point. Then, if the motion is possible, by the central-force theorem the
specific angular momentum of each of the three points must be constant:

hi = r2i θ̇ = ci . (3.19)

Using (3.6), (3.10), and (3.19), it follows that:

ρ2θ̇ = ψ = ci
(r◦

i )
2

= c◦. (3.20)

The fact that the three constants ci/(r◦
i )

2 are equal implies that the condition ψ̇ = 0
is satisfied, as we anticipated above (3.16b).

7 Using the (3.13) and assuming, for instance, that xi ≤ x j ≤ xk (or yi ≤ y j ≤ yk ), it is easy to
prove for the index i that the constant must be positive.
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Combined with the particular geometric configuration and the property expressed
by (3.20), the condition (3.18) reduces the six equations (3.12) to one only:

ρ̈ − c2◦
ρ3

= −n2
G

ρ2
, (3.21)

which expresses the law of variation for the function ρ(t), scaling factor of the
system. From (3.10) we have then the expression of the angular velocity:

θ̇ = c◦
ρ2

, (3.22)

with which the system of points rotates rigidly around the center of gravity. Apart
from the notation, (3.21) and (3.22) are identical to those obtained for the Keplerian
motion in polar coordinates. The time derivative of (2.14) gives the first; as for the
second, compare it with (2.17). Finally, the (3.18) prove that each component of
the resulting force acting on the point Pi is proportional to the component, along the
same axis, of the barycentric vector ri = −−→

BPi . Thus, the resulting force on each body
of the system is proportional to the distance of that body from the center of gravity.

All that remains is to find the coordinates of the three bodies (at the time t = 0).
To this end, we place the origin of the relative reference system in one of the masses;
for instance, mi . The equation of motion for the relative system can be immediately
written using (1.38):

r̈i = −G(mi + m j )
ri
r3i

+ Gmk

[
rk − ri
r3ki

− rk
r3k

]
. (3.23)

It is simple to verify that, in this case, we obtain the same (3.12) but with different
expressions for Aix and Aiy :

Aix = (mi + m j )
x◦
i

(r◦
i )

3
+ mk

[
x◦
k

(r◦
k )

3
− x◦

k − x◦
i

(r◦
ik)

3

]

(i �= j �=k= 1, 2, 3).

Aiy = (mi + m j )
y◦
i

(r◦
i )

3
+ mk

[
y◦
k

(r◦
k )

3
− y◦

k − y◦
i

(r◦
ik)

3

] (3.24)

Since we are interested in collinear solutions, we choose the initial epoch such that
the three points are aligned along the x-axis, so that y◦

i = 0 for all the three values
of the index i (Fig. 3.3). Hence, we have to deal with the first of the (3.24) only. As
found above, any stationary solution implies the condition (3.17):

A jx

x◦
j

= Akx

x◦
k

. (3.25)



90 3 The Three-Body Problem

Fig. 3.3 Sketch of the configuration of three collinear points

Fig. 3.4 Configuration of the three masses for the Lagrangian point L1 for the case in which
m1 = 10m3 and m2 = 5m3

With the following choice of indexes: i = 1, j = 2, k = 3, it becomes:

A2x

x◦
2

= A3x

x◦
3

, (3.26)

and the two surviving (3.24) rewrite as:

A2x = (m2 + m1)
x◦
2

(r◦
2 )

3
+ m3

[
x◦
3

(r◦
3 )

3
− x◦

3 − x◦
2

(r◦
23)

3

]
, (3.27a)

A3x = (m3 + m1)
x◦
3

(r◦
3 )

3
+ m2

[
x◦
2

(r◦
2 )

3
− x◦

2 − x◦
3

(r◦
23)

3

]
. (3.27b)

It is apparent that there are three distinct solutions for the collinear configuration (that
is, for the position of the third mass relative to the first two). They are called collinear
Lagrangian or libration points, and are generally indicated with the symbols L1, L2,
and L3. For example, having fixed the positions of m1 and m2, the third mass m3

can set either in L1, the Lagrangian point located between m1 and m2 (Fig. 3.4), or
outside the line joining m1 to m2, either in L2, which is on the side of m2 (Fig. 3.5),
or in L3, which places on the opposite side (Fig. 3.6).

Lagrangian Point L1

Consider the case:

r◦
2 = x◦

2 = 1 + a, (3.28)

r◦
3 = x◦

3 = 1, (3.29)

such that the mass m3 is situated between m1 and m2 (Fig. 3.4). We have:
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Fig. 3.5 Same as Fig. 3.4 for the Lagrangian point L2

A2x = m2 + m1

(1 + a)2
+ m3

[
1 + 1

a2

]
,

A3x = m3 + m1 + m2

[
1

(1 + a)2
− 1

a2

]
.

(3.30)

Together with (3.26), they give:

(m2 + m1)

(1 + a)3
+ m3

1 + a
+ m3

a2(1 + a)2
= m3 + m1 + m2

(1 + a)2
− m2

a2
, (3.31)

and, after simplifying:

(m1 + m3) a
5 + (3m1 + 2m3) a

4 + (3m1 + m3) a
3+

−(3m2 + m3) a
2 − (3m2 + 2m3) a − (m2 + m3) = 0. (3.32)

According to the Descartes rule of signs,8 this 5th degree algebraic equation9 has
only one real and positive root (since the coefficients change their sign only once).
Therefore the root of the (3.36) provides a unique value for the distance a between
m2 and m3 in units of the distance between m1 and m3.

Lagrangian Point L2

Consider now the case:
r◦
2 = x◦

2 = 1,
r◦
3 = x◦

3 = 1 + a,
(3.33)

with which the mass m3 places on the right side of m2 as in Fig. 3.5. It is:

8 The maximum number of positive real roots of a ordered polynomial is given by the number of
sign variations between consecutive coefficients, neglecting any null coefficients.
9 Note that this equation is homogeneous with respect to the masses and can be always rewritten in
terms of m2/m1 and m3/m1, for instance.
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Fig. 3.6 Same as Fig. 3.4 for the Lagrangian point L3. Note that now L3 is on the negative side of
the x-axis

A2x = (m2 + m1) + m3

[
1

(1 + a)2
− 1

a2

]
,

A3x = m3 + m1

(1 + a)2
+ m2

[
1 + 1

a2

]
,

(3.34)

which, again through (3.26), give us:

(m2 + m1) − m3

a2
+ m3

(1 + a)2
= m3 + m1

(1 + a)3
+ m2

1 + a
+ m2

a2(1 + a)
, (3.35)

and, by simplifying:

(m1 + m2) a
5 + (3m1 + 2m2) a

4 + (3m1 + m2) a
3 +

−(m2 + 3m3) a
2 − (2m2 + 3m3) a − (m2 + m3) = 0. (3.36)

Lagrangian Point L3

Finally, consider the case:
r◦
2 = x◦

2 = 1,
r◦
3 = −x◦

3 = a,
(3.37)

placing the mass m3 on the left-hand side of m1 (Fig. 3.6). We have:

A2x = m2 + m1 + m3

[
− 1

a2
+ 1

(1 + a)2

]
,

A3x = −m3 + m1

a2
+ m2

[
1 − 1

(1 + a)2

]
,

(3.38)

and:
m2 + m1 − m3

a2
+ m3

(1 + a)2
= m3 + m1

a3
− m2

a
+ m2

a(1 + a)2
, (3.39)

from where:
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(m1 + m2)a
5 + (2m1 + 3m2) a

4 + (m1 + 3m2) a
3 +

−(m1 + 3m3) a
2 − (2m1 + 3m3) a − (m1 + m3) = 0. (3.40)

Wecan see that (3.32), (3.36), and (3.40) differ fromeach other only in the coefficients
and are valid for any set of masses (but be careful in remembering how a is defined
in each one of the three cases). They must be solved numerically. However, (3.32)
readily shows that, form1 = m2 = m andm3 = 0, the Lagrangian point L1 is located
in the baricenter of the system, as it is obvious for symmetry reasons. Also, the
solutions for L2 and L3 are the same in this case; it means that these stationary
points are located at the same distance a = 0.698 (in units of the distance between
m1 andm2), L2 fromm2 on its right (see Fig. 3.5) and L3 fromm1 on its left (Fig. 3.6)
respectively.Wewill consider the casem3 	 0 inmore detain in Sect. 3.2. The reader
can verify also that, if m2 
 m1 and m3 = 0, the Lagrangian points L1 and L2 are
located very near the mass m2 while L3 places on the other side, almost on the
circumference whose radius is the distance between m1 and m2.

3.1.2 Triangular Solutions

Let us see what happens if conditions (3.16b) and (3.18) are satisfied but (3.16a) is
not. Since the configuration cannot be collinear, it must be triangular. We show that
this triangle is necessarily equilateral. To this purpose, making use of the equations
of the center of mass:

mi x
◦
i + m j x

◦
j + mkx

◦
k= 0,

mi y
◦
i + m j y

◦
j + mk y

◦
k= 0,

(3.41)

we eliminate x◦
k and y◦

k from (3.18) and obtain six equations of the type:

n2x◦
i = x◦

i

[
mi + mk
(
r◦
ik

)3 + m j
(
r◦
i j

)3

]

+ m j x
◦
j

[
1
(
r◦
ik

)3 − 1
(
r◦
i j

)3

]

,

n2y◦
i = y◦

i

[
mi + mk
(
r◦
ik

)3 + m j
(
r◦
i j

)3

]

+ m j y
◦
j

[
1
(
r◦
ik

)3 − 1
(
r◦
i j

)3

]

.

(3.42)

In our hypotheses they are satisfied if r◦
ik = r◦

i j (according to the independence of xi
from x j , which is the same argument used for (3.18)), that is, by exchanging indexes,
if:

r◦
12 = r◦

23 = r◦
13 = a. (3.43)

Therefore, at the time t = 0 the three massive points are located at the vertexes of
an equilateral triangle, which must stay similar to itself during motion. Once two of
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Fig. 3.7 Schematic
positions (5 Lagrangian
points) that a third mass can
take with respect to two
other massive points in order
to make a stationary
configuration

the three massive points have been set, the third has only two positions available on
the plane of motion,10 the triangular Lagrangian points L4 and L5 (see Fig. 3.7 and
cf. Sect. 3.1.1).

Substituting (3.43) in (3.42), we have:

n2 = m1 + m2 + m3

a3
= M

a3
, (3.44)

where M =
3∑

i=1

mi is the total mass. The resultant of the forces on each point is

derived from (3.14), (3.18), and (3.44). Passing to the vectors, we obtain:

f◦
i = −G mi

M

a3
r◦
i . (3.45)

Since t0 is arbitrary, then:

fi = −G mi
M

ρ3a3
ri . (3.46)

As already seen in the previous paragraph about the collinear solution, fi is directed
towards the center of mass and has a modulus proportional to the distance ri = −−→

BPi
of Pi from barycenter B. The latter can be derived from the relation defining the
center of mass with respect to the position of the point Pi . It is:

10 It seems appropriate to emphasize the fact that, once given the initial conditions (positions and
velocities) of the two masses, stationary motion is allowed only in the plane orthogonal to the
angular momentum of these two masses.
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M ri = m j
−−→
Pi Pj + mk

−−→
Pi Pk, (3.47)

where, at t = 0, |ri | = r◦
i and |−−→Pi Pj | = |−−→Pi Pk | = r◦

i j = r◦
ik = a. Remembering that

the two vectors
−−→
Pi Pj and

−−→
Pi Pk form an angle of 60◦, from the modulus of (3.47) we

obtain:

r◦
i =
√
m2

j + m jmk + m2
k

M
a. (3.48)

Using this expression to replace the lenght a of the side of the triangle in (3.45), the
force fi takes the simple and familiar form:

fi = −G
miMi

r3i
ri , (3.49)

where the fictitious mass Mi is:

Mi = (m2
j + m jmk + m2

k)
3/2

(mi + m j + mk)2
. (3.50)

Equation (3.49) shows that each point Pi behaves as if it only feels the effect of the
mass Mi (specific to each point) placed at the barycenter. The same result can be
obtained by other means remembering that (3.21) and (3.22), identifying a Keplerian
motion, are valid for every solution of the stationary three-body problem.

3.1.3 Stationary Solutions: Summary

The results of this whole section can be summarized as follows.

1. Two stationary configurations of three bodies are possible, either collinear or
triangular with all sides equal (equilateral).

2. The resultant of the forces on each point is proportional to the inverse of the square
of its distance from the gravity center.

3. The motion of each point around the gravity center is Keplerian.

This set of stationary solutions of the three-body problem is named after Euler-
Lagrange, as in 1765 the Swiss mathematician demonstrated the existence of the
collinear solutions and 7 years later Lagrange added the triangular solutions. For
two centuries they were also considered as the unique periodic solutions of the three-
body problem. In the 1970s,with the aid ofmodern computer, theU.S.mathematician
Roger Broucke (1932–2005) and the French astronomerMichel Henon (1931–2013)
found other periodic cases for systems of equal masses, and later the rich family of
weakly stable figure-8 periodic solutions began to appear [1].
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3.2 The Circular Restricted Three-Body Problem

Since the three-body problem does not admit a general solution, we try to simplify it
assuming that one of the points, henceforth indicated with P , has a negligible mass
compared to the others two. In other words, we want to reach the condition in which
the gravitational pull of P on P1 and P2 can be ignored. On the contrary, P will be
always subject to the attraction by the two massive bodies, thus it can be considered
as a test particle. This is possible as the equations of motion of P do not contain its
mass; on the contrary, the latter is at factor in the expressions of the forces of P on
P1 and P2, making them vanish. This simplified mathematical model is applicable
to more real situations.

Due to the negligibility of the mass of P , the other two bodies P1 and P2 meet the
conditions for a two-body problem; their mutual orbits are Keplerian. For simplicity,
we further assume that:

(a) these orbits are circular, and that
(b) the sum of the masses of P1 and P2, their mutual distance d = P1P2, and the

universal gravitation constant G are units.

We also adopt the following notations/conventions:

(c) μ is the mass of P2 and 1−μ that of P1, assuming, without loss of generality,
that:

(d) μ ≤ 1−μ, that is: μ ≤ 0.5.

Under these assumptions, only the motion of P remains to be determined; a three-
body problem that takes the adjective ‘restricted’ to distinguish it from the general
case where there are no constraints on masses [2], [3]. We use the inertial reference
system B [ξ , η, ζ ], with origin at the barycenter B of the masses P1 and P2 and axes
ξ and η contained on the invariable plane of their motion. Having indicated with
(ξ, η, ζ ) the coordinates of the point P , using (3.4) the system of its equations of
motion writes as:

ξ̈ = −(1 − μ)
ξ − ξ1

r31
− μ

ξ − ξ2

r32
,

η̈ = −(1 − μ)
η − η1

r31
− μ

η − η2

r32
, (3.51)

ζ̈ = −(1 − μ)
ζ

r31
− μ

ζ

r32
,

where (ξi , ηi , 0) are the coordinates of the massive point Pi (i = 1, 2) and:

ri =
√

(ξ − ξi )2 + (η − ηi )2 + ζ 2, (3.52)

is the modulus of the vector
−−→
Pi P (with i = 1, 2) (Fig. 3.8). We now introduce a

new reference system B[x ,y,z], co-rotating with the massive points P1 and P2. To
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Fig. 3.8 Barycentric reference systems for the restricted three-body problem. The axes (x, y) and
(ξ, η) lie on the plane of motion of the massive points P1 and P2

this purpose we set the new system in rotation about the ζ = z axis with the same
angular velocity of the radius vector

−−→
P1P2; the previous choice of the units implies

that the mean motion is n = 1; cf. (2.83). We can also choose the x-axis in such a
way that it contains P1 and P2, whose new coordinates are therefore P1(x1, 0, 0) and
P2(x2, 0, 0). Remembering that |−−→P1P2| = 1, from the system:

(1 − μ) x1 + μx2 = 0,

|x1 − x2| = 1,
(3.53)

the values of x1 and x2 are derived.
The new coordinates of P are given by:

ξ = x cos t − y sin t,

η= x sin t + y cos t, (3.54)

ζ = z.

Replacing in (3.51) we obtain the new equations of the motion of P:

(
ẍ − 2 ẏ − x

)
cos t − (ÿ + 2ẋ − y

)
sin t =

= −
[
(1−μ)

x−x1
r31

+ μ
x−x2
r32

]
cos t +

[
(1−μ)

y

r31
+ μ

y

r32

]
sin t, (3.55a)

(
ẍ − 2 ẏ − x

)
sin t + (ÿ + 2ẋ − y

)
cos t =

= −
[
(1−μ)

x−x1
r31

+ μ
x−x2
r32

]
sin t −

[
(1−μ)

y

r31
+ μ

y

r32

]
cos t, (3.55b)

z̈ = −(1 − μ)
z

r31
− μ

z

r32
. (3.55c)
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We can simplify them by the following procedure: equation (3.55a) multiplied by
cos t is added to the (3.55b) multiplied by sin t . After proper reductions, we obtain
the first equation of the system (3.56). The second equation is derived in the same
way by multiplying (3.55a) by − sin t and adding the result to the (3.55b) multiplied
by cos t . In conclusion, we obtain the system of the three scalar differential equations
of the motion of P relative to the system of axes co-rotating with the massive points
P1 and P2:

ẍ − 2 ẏ = x − (1 − μ)
x − x1
r31

− μ
x − x2
r32

,

ÿ + 2ẋ = y − (1 − μ)
y

r31
− μ

y

r32
, (3.56)

z̈ = −(1 − μ)
z

r31
− μ

z

r32
,

with ri = √(x − xi )2 + y2 + z2. The system (3.56) has an important property; its
equations do not explicitly involve the independent variable t . This fact is due to the
particular choice of the reference system which eliminates from equations (3.51) the
coordinates ξi and ηi which depend explicitly on time.

The set of (3.56) is equivalent to a system of six scalar differential equations
of the first order; thus the solution of the problem of the motion of P requires the
knowledge of six motion integrals. One such integral, found by Jacobi, is obtained
introducing the scalar function:

U = 1

2
(x2 + y2) + 1 − μ

r1
+ μ

r2
, (3.57)

corresponding to the sum of the centrifugal and the gravitational potentials.11 It is
straightforwardly verified that:

11 According the (D.8) ofAppendixD, the centrifugal acceleration term to be added to the true accel-
eration (relative to the non rotating system) is −−→ω × (−→ω × r′). Here we have: r′ = x′i′ +y′j′ +z′k′
and −→ω = k′, since ω = 1. Therefore, the centrifugal potential is:

−−→ω × (−→ω × r′) = x ′i′ + y′j′,

whose integral is:

Uc =
∫

(x ′i′ + y′j′) · dr′ =
∫

x ′ dx ′ +
∫

y′ dy′ = 1

2

(
x ′2 + y′2) .

Moreover, since |r′| = |r|, then:

Uc = 1

2

(
x2 + y2

)
.

You may ask what happened to the Coriolis acceleration 2−→ω × dr′

dt
. Its components are already at

the left-hand sides of the first two (3.56), as a consequence of the applied rotation.



3.3 The Zero-Velocity Curves 99

ẍ − 2 ẏ = ∂U

∂x
, ÿ + 2ẋ = ∂U

∂y
, z̈ = ∂U

∂z
. (3.58)

Summing up the three (3.58) multiplied respectively by ẋ , ẏ and ż, we have:

ẋ ẍ + ẏ ÿ + ż z̈ = ∂U

∂x
ẋ + ∂U

∂y
ẏ + ∂U

∂z
ż, (3.59)

that, integrated with respect to time (remember thatU does not depend explicitly on
t), provides the Jacobi integral:

ẋ2 + ẏ2 + ż2 = |ṙ|2 = 2U − CJ = x2 + y2 + 2
1 − μ

r1
+ 2

μ

r2
− CJ , (3.60)

where |ṙ| is the modulus of the velocity of P in the rotating reference system, and
CJ is an integration constant, named after Jacobi.

The Jacobi integral finds immediate use in the Tisserand12 method for the identifi-
cation of periodic comets.We know that the orbit of one comet is subject to planetary
perturbations. For this reason, the same comet may exhibit quite different orbital ele-
ments in two successive passages. However, if non-gravitational effects are neglected
(a hypothesis that for comets is not always acceptable13) and it is assumed that the
perturbations on the orbital elements are caused by just one planet only (typically
Jupiter), then the integral of Jacobi is conserved. Therefore, if two comets which
appeared at different epochs with different orbital elements have the same value of
the Jacobi integral, it is likely that they represent successive transits of a same object.
In practice it can be demonstrated (see [3]) that, with good approximation considered
the small mass of Jupiter with respect to the Sun, the constant CJ is given by the
equation:

CJ = 1

a
+ 2
√
a
(
1 − e2

)
cos i, (3.61)

where a, e and i are the Keplerian orbital elements of the comets.

3.3 The Zero-Velocity Curves

The Jacobi integral reduces by one unit the degree of the problem of the motion of
the massless point in the gravitational field of P1 and P2, but it is not sufficient to
solve it. Indeed, it has been shown that there are no other motion integrals, both in

12 Félix Tisserand (1845–1896). French astronomer, author of the classical Traitéde mécanique
céleste.
13 Already Bessel in 1835 pointed out that comets could be subject to various types of non-
gravitational forces, including transit in a resistant medium (hypothesis already considered by
Johann Encke (1791–1865), pupil of Gauss and discoverer of the homonymous comet) and the
effect of ejection of matter, both in impulsive and continuous form.
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Cartesian coordinates and when the orbital elements are used [4–6]. Nonetheless,
the study of function in (3.60):

f (x, y, z;CJ ) = x2 + y2 + 2
1 − μ

r1
+ 2

μ

r2
− CJ , (3.62)

is very instructive. In fact, being |ṙ|2 ≥ 0, as a result of (3.60) it must also be:
f (x, y, z;CJ ) ≥ 0. Therefore, even if it is not possible to determine the motion of
P , the equation:

f (x, y, z;CJ ) = 2U − CJ = 0, (3.63)

allows us to define at least the zero-velocity boundaries of the space, called Hill sur-
faces,withinwhich P canmove, as a function of the value of the constantCJ . Because
the rigorous solution of (3.63) involves considerable mathematical difficulties (once
rationalized, the first term is equivalent to a polynomial of the 16-th grade), we limit
ourselves to a qualitative study; the quantitative solution can always be obtained
numerically. For convenience, we treat separately the three cases obtained by pro-
jecting the position of the point P on each of the principal planes of the coordinate
system.

3.3.1 The (x, y) Plane

With the condition z = 0, (3.63) becomes:

f1(x, y) + f2(x, y) + f3(x, y) = CJ , (3.64)

where we have placed (see (3.60)):

f1(x, y) = x2 + y2,

f2(x, y) = 2(1 − μ)
√

(x − x1)2 + y2
, (3.65)

f3(x, y) = 2μ
√

(x − x2)2 + y2
.

It is apparent that, as the projected distance r = √x2 + y2 of P from the barycenter
B increases, f1 also increases while f2 and f3 decrease. Consider the case in which
the initial conditions assign the constant CJ a very high value (r  d = 1). It is
possible that f1 ∼ CJ since, if x2 + y2 ∼ CJ , both 1/r1 and 1/r2 must be very
small and so are the functions f2 and f3. The zero-velocity curve is therefore similar
to a circumference with the large radius (	 √

CJ ), centered at the barycenter B of the
system. It simply means that, at great distances compared to the separation between
P1 and P2, the massless point P sees the twomassive points under a very small angle.
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Fig. 3.9 Left: projection of the zero-velocity surfaces on the plane (x, y) of the coordinate system
co-rotating with the two massive points P1 and P2, for different values of the constant CJ , marked
by the change of color. Right: the surface plots (3.64) for an arbitrary choice of μ in (3.65)

Therefore the gravitational field appears increasingly isotropic. Since f1 ∼ CJ ≥ 0,
the region allowed to P (where the velocity is not imaginary) must be external to the
pseudo-circumference (curve (a) in Fig. 3.9).

The solution just found is not unique. For a very large CJ , it is also possible that
f2 ∼ CJ if P is close to P1; then 1/r1  1, while both 1/r2 and (x2 + y2) will be
reasonably small, reducing the weight of the functions f1 and f3. The zero-velocity
curve would be once again a pseudo-circumference, now centered on P1, whether
f1 and f3 could be strictly null. Actually the curve looks like a small oval stretched
in the direction of P2 and symmetric with respect to the x-axis (curve (b)). With
a similar reasoning it can be seen that there is a third closed curve similar to the
previous one (but generally smaller since μ ≤ 0.5), which encircles the point P2
(curve (c)). The condition f ≥ 0 imposes P to remain confined within one of these
two oval regions which, forCJ sufficiently large, have no points in common between
them and with the outer circle. The region of the plane external to them (curves (b)
and (c)) and inside the major quasi-circumference (curve (a)) is forbidden to P . It
is worth stressing that, in absence of external forces able to modify the value of
CJ (perturbations), P is forced to move perpetually within one of the three allowed
regions, because the transit from one to another would involve crossing the region
where the velocity is imaginary.

For smaller values of the constant CJ (which, in absence of perturbations, can
vary only by changing the initial conditions), the forbidden surface shrinks since the
size of the pseudo-circumference (a) decreases (stretching along the y-axis) while
the contours of (b) and (c) grow. For suitable values of CJ , the curves (b) and (c)
come in contact with each other and each of them with the curve (a); for obvious
reasons of symmetry, these contact points, which we call L1, L2 and L3, must lie
on the x-axis (see Fig. 3.10). They are also saddle points of the zero-velocity curves
since:
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Fig. 3.10 Same as the left
panel of Fig. 3.9 but for
special values of CJ giving
rise to the Lagrangian points

∂

∂x
f (Li ) = ∂

∂y
f (Li ) = 0 (i = 1, 2, 3). (3.66)

The second condition is verified anywhere on the x-axis owing to the symmetry of
f , while the first descends from the fact that f (x, 0) has an extreme in Li . The (3.66)
shows that the partial derivatives ofU (cf.Eq. (3.63)) are null in Li , and therefore the
accelerations in the co-rotating system also vanish.

In conclusion, L1, L2, and L3 are stationary points since both the velocity and
the acceleration of P (in the co-rotating system) vanish there. The stationarity with
respect to z is ensured on the whole plane x, y by the fact that, for z = 0, the third of
the (3.56) gives z̈ = 0. This implies that in these three positions the massless point P
co-rotates with P1 and P2 (rigidly as by hypothesis the motion of the massive points
is circular).

Two other positions of equilibrium are obtained when, at a further decreasing of
CJ , the zone forbidden to P shrinks down to two points (L4 and L5), symmetric
with respect to the x-axis (Fig. 3.10). They form two equilateral triangles with P1
and P2. We demonstrate this statement by proving that the five stationary points we
just found represent particular cases of the Lagrangian configurations discussed in
Sect. 3.1, when one of the masses is null. We rewrite (3.18) defining the necessary
and sufficient conditions for stationarity, using the conventions already adopted for
this problem:
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Fig. 3.11 Special choice of
CJ which creates a
communication channel
between the two regions,
now called Roche lobes,
surrounding P1 and P2

μ = −n2x1,

1 − μ = n2x2,

(1 − μ)
x − x1
r31

+ μ
x − x2
r32

= n2x, (3.67)

(1 − μ)
y − y1
r31

+ μ
y − y2
r32

= n2y.

The first two equations are equivalent to the definition of the center of gravity. From
themwe derive that n2 = 1, with which the last two come to coincide with the partial
derivatives of (3.57).

An interesting astrophysical application of this analysis was made by the French
astronomer and mathematician Édouard Albert Roche (1820–1883), author also of
the famous Roche limit.14 As shown in Fig. 3.11, with a particular choice of CJ the
regions inside the two Hill curves surrounding P1 and P2 respectively can be put in
communication through L1, while keeping the matter confined. In this situation a
test particle is free to transit from one region to the other, carrying matter and a part
of the orbital angular momentum of the system. This happens, for instance, in some
close stellar binary systems. Suppose that the region assigned to P1 in the figure is
occupied by a star in an evolutionary phase in which the outermost layers expand
(this happens, for example, when a star runs out of central hydrogen and begins its
ascent path of the so-called Giant Branch in the H-R diagram). When the situation
represented in the figure occurs, the matter of the stellar envelope of P1 begins to

14 Minimum distance from the center of a celestial body to prevent a smaller object (orbiting it and
holding itself together by self-gravity) from fragmenting due to tidal forces.
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Fig. 3.12 An artistic conception of the accretion disk in a close binary system, drawn through the
data of the real case of the WZ Sge system. Credit: P. Marenfeld and NOIRLab/NSF/AURA

transit in the region of competence of the star P2 and, if the latter is a compact object
(neutron star or black hole), this matter goes to place itself in a disk called accretion
disk, from which it will then fall towards the degenerate star, creating production of
X-rays and eventually the phenomenon of nova (Fig. 3.12). It goes without saying
that the detailed study of these situations presents a high degree of complexity, if
only for the fact that the bodies in play are finite, deformable, and very close to each
other [7].

3.3.2 The (x, z) Plane

With the condition y = 0, (3.63) becomes:

f1(x, z) + f2(x, z) + f3(x, z) = CJ , (3.68)

where we placed (see (3.60)):



3.3 The Zero-Velocity Curves 105

Fig. 3.13 Same as Fig. 3.9 for the projection of the zero-velocity curves on the x, z plane

f1(x, z) = x2,

f2(x, z) = 2(1 − μ)
√

(x − x1)2 + z2
, (3.69)

f3(x, z) = 2μ
√

(x − x2)2 + z2
.

This case differs from the previous one only in the form of f1. Therefore, with respect
to Fig. 3.9, only the curve (a) will be drastically modified, while the curves (b) and
(c) remain almost unchanged.We leave to the reader to discuss the curves in Fig. 3.13
following the line of thought adopted above. On the x, z plane there are three saddle
points, all contained on the x-axis, which identify three stationary positions. They
coincide with the points L1, L2, and L3 of the previous case, as shown by the fact
that, for z = 0, the (3.69) coincide with the (3.65) when we set y = 0.

3.3.3 The ( y, z) Plane

With the condition x = 0, (3.63) becomes:

f1(y, z) + f2(y, z) + f3(y, z) = CJ , (3.70)

where (see (3.60)):
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Fig. 3.14 Same as Fig. 3.9 for the projection of the zero-velocity curves on the y, z plane. In this
projection, the two points P1 and P2, which are aligned along the x-axis, fall on each other

f1(y, z) = y2,

f2(y, z) = 2(1 − μ)
√
x21 + y2 + z2

, (3.71)

f3(y, z) = 2μ
√
x22 + y2 + z2

.

It is relatively simple to understand the shape of the curves in Fig. 3.14. We start
noticing that the functions fi depend exclusively on y2 and z2; therefore, the zero-
velocity curves must be symmetric with respect to both these axes. For a very large
CJ , the condition (3.63) is verified if f1(y, z) ∼ CJ . This case produces curves that
tend asymptotically to straight lines parallel to the z-axis. When P is near the origin
of the coordinate system, all the three functions fi give a non negligible contribution.
The almost elliptical shape of the curves that are obtained is due to the presence of
the term in y2, without which they would be circles. The region included between
the internal and the external curves, defined for the same value of CJ , is forbidden
to the motion of P . As usual, its extension decreases with CJ .

The only saddle point is given by the origin of the axes, i.e., by the projection
of the center of gravity B of the two massive points, P1 and P2. But this position
is not necessarily of equilibrium. In fact, if P is in B with zero velocity, it will not
remain indefinitely there because, as we see from the first of (3.56), its acceleration
generally has not a null component along the x-axis. The equilibrium occurs only
if 1 − μ = μ = 0.5; in this case the barycenter B coincides with the position of the
Lagrangian point L1. The same condition turns into equilibrium points the other two
double points contained in the y-axis and symmetric with respect to the origin, which
thus coincide with L4 and L5.
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3.4 Considerations on the Lagrangian Points

In the previous section we have seen that, although the restricted three-body problem
does not admit a complete solution, the existence of the Jacobi integral (3.60) allows
us to identify, according to the initial conditions, the regions of space within which
the massless point P can move. If CJ has a very large value, the region allowed
to P is either external to a quasi-cylinder (narrowed near to the x, y plane) which
is symmetrical with respect to the z-axis, or it is internal to one of the two quasi-
ellipsoids surrounding P1 and P2. These three regions are isolated and P cannot
travel from one to the other. For smaller values of CJ they may come first in contact
and then even overlap completely, so that P can move freely from one region to the
other.

Finally, the Jacobi integral allows us to recognize five equilibrium positions on
the x, y plane (i.e., with respect to the reference system co-rotating with P1 and
P2), which coincide with the Lagrangian points15 L1, L2, L3, L4, and L5. Easy to
understand in a purely mathematical sense, these stationary points are rather peculiar
and improbable. We must realize that they are not traps in the motion of P but
privileged positions which must be occupied at the beginning of the motion itself
and then forever (in absence of perturbations). In fact, suppose that, at the epoch t◦, P
transits though L1 with the correct value ofCJ , then stopping at that position forever.
If it were possible, it would violate the reversibility of the equations of motion with
respect to time. In fact, the same point P that is in L1 at t◦, will have to stay there
at any other time, including when t < t◦ (remember that in L1 both velocity and
acceleration vanish). But then two problems with the same initial conditions would
come to have different solutions, which is against the deterministic model of classical
mechanics. Does this imply that it is not possible to find initial conditions allowing
P to transit L1? Of course not! It just means that P cannot stop in L1 in the absence
of external forces.

It may be interesting to report here a practical use of the Lagrangian points L1

and L2 of the Earth-Sun systems. Although unstable (see the next section Sect. 3.5),
they allow bodies of negligible mass (e.g. solar observatories as the NASA Solar and
Heliospheric Observatory (Soho) and Advanced Composition Explorer (Ace) at L1

and other satellites as the NASAWilkinson Microwave Anisotropy Probe (WMAP),
the ESA Herschel Space Observatory, Planck Surveyor, and Global Astrometric
Interferometer for Astrophysics (Gaia), and the NASA JamesWebb Space Telescope
(JWST) at L2) to remain around these points on ‘quasi-bound orbits’, called halo
orbits because of their shape, by means of few corrections. For a more detailed
discussion, see [8].

15 The numeration of Lagrangian points is usually that of decreasing CJ .
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Fig. 3.15 Lagrangian point L2: geometry for the determination of the coordinate x

3.4.1 Case of Dominant Mass

In the restricted three-body problem, the search for the barycentric coordinates (x, y)
of theLagrangian points L1, L2, and L3 in the co-rotating reference system is straight-
forward. Let us consider, as an example, the case of the collinear point L2. We must
search for the coordinate x only, since y = 0. From Fig. 3.15, which makes reference
to the (3.53), we have:

r1 − r2 = 1,

r1 = x + μ, (3.72)

r2 = x − (1 − μ).

Now, the coordinates L2, (x, 0), must satisfy the the condition ∇U = 0, where the
Jacoby potential U is given by (3.57). Using (3.72), we have:

∇U (L2) = dU

dx
= (1 − μ)

(
− 1

(1 + r2)2
+ 1 + r2

)
+

+ μ

(

− 1

r22
+ r2

)

= 0, (3.73)

from where:
μ

1 − μ
= 3r32

1 + r2 + (r22/3)

(1 + r2)2(1 − r32 )
. (3.74)

If μ 
 (1 − μ), then r2 
 1, and (3.74) reduces to:

r2 ≈
(

μ

3(1 − μ)

)1/3
, (3.75)

and

x ≈ (1 − μ) +
(

μ

3(1 − μ)

)1/3
	 1 +

(μ

3

)1/3
, (3.76)
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Fig. 3.16 Lagrangian points
for the case in which the
mass of P1 dominates over
that of P2

obviously, in units of the distance a between P1 and P2. A similar procedure allows
us to obtain the coordinates of L1 and L3.

The search for the coordinates of L4 and L5 is even simpler, whatever it isμ ≤ 0.5.
It is enough to prove, through the equation of the barycenter, that P1B = −μ and
observe that P1H = 1/2 (Fig. 3.16).

In summary, the coordinates (in units of the distance d between P1 and P2) of the
Lagrangian points for16 μ 
 1 − μ are (Fig. 3.16):

point L1

[(
1 − 3

√
μ

3

)
, 0

]
,

point L2

[(
1 + 3

√
μ

3

)
, 0

]
,

point L3

[
−
(
1 + 7μ

12

)
, 0

]
,

point L4

[
(1 − 2μ)

2
,

√
3

2

]

,

point L5

[
(1 − 2μ)

2
,−

√
3

2

]

.

(3.77)

From the (3.77) we see that the Lagrangian points L1 and L2 in the system Sun-Earth

are d 3

√
μ

3
	 1.5 × 106 km from the Earth, since d = 1AU and μ = M⊕

M� + M⊕
	

3 × 10−6.

16 The limitation applies only to the collinear points L1, L2, and L3.
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Fig. 3.17 Schematic viewof the ‘halo orbit’ of JamesWebbSpaceTelescope around theLagrangian
point L2. Clearly the distances of L1 and L2 from the Earth are not in scale with the distance Earth-
Sun. Credit: NASA’s Goddard Space Flight Center

This is the distance that NASA space telescope JWST, launched at Christmas
2021, had to travel to reach its final destination: the surroundings of the point L2

where, by revolving with the Earth around the Sun, it is able to maintain contact with
the terrestrial bases and at the same time the attitude of the shields that protect the
infrared instrumentation from the solar radiation (Fig. 3.17).

3.5 Stability of the Lagrangian Points

The Lagrangian points are equilibrium positions. But, is this equilibrium stable? We
will try to find it out by treating the issue through a first-order analysis.

To this end we suppose that a massless body P occupies an equilibrium position
in the co-rotating system B[x , y, z], i.e., that it sits on a Lagrangian point with
zero relative velocity. We want to study its motion after applying a small impulsive
perturbation. If P reacts in such a way that it remains indefinitely in the vicinity of
the Lagrangian point, the equilibrium is stable. Otherwise, the position is unstable
equilibrium.
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3.5.1 Conditions for the Equilibrium

To study under which conditions a position of equilibrium is stable,17 we expand
the partial derivatives of the Jacobi potential at the right-hand side of the (3.58) in
a Taylor series in the vicinity of the generic point Q of coordinates (x◦, y◦, z◦),
retaining only the first order terms. This means that the result is valid only for small
displacements (linear theory). We have:

∂U

∂x
≈
(

∂U

∂x

)

◦
+ (x − x◦)

(
∂

∂x

∂U

∂x

)

◦
+

+ (y − y◦)
(

∂

∂y

∂U

∂x

)

◦
+ (z − z◦)

(
∂

∂z

∂U

∂x

)

◦
, (3.78)

and similar expressions for the derivatives with respect to y and z. Let us now identify
the generic point Q with a Lagrangian point Li (x◦

i , y
◦
i , z

◦
i ), remembering that (3.66)

holds. This means that z◦
i = 0 and that the equations of motion (3.58) satisfy the

conditions:

ẍ◦
i − 2 ẏ◦

i =
(

∂U

∂x

)

◦
= 0,

ÿ◦
i + 2ẋ◦

i =
(

∂U

∂y

)

◦
= 0, (3.79)

z̈◦
i =
(

∂U

∂z

)

◦
= 0,

since both velocity and acceleration are zero at a Lagrangian point in the co-moving
system.

In conclusion, using the (3.79) and (3.78) and introducing the new coordinates
(Fig. 3.18):

x ′ = x − x◦
i ,

y′ = y − y◦
i , (3.80)

z′ = z,

which represent the displacement with respect to the libration point in the neigh-
borhood of the equilibrium position, the equations of motion of P given by (3.58)
translate into a system of linear differential equations with constant coefficients:

17 A stability analysis of this kind becomes necessary when the Coriolis forces are introduced and
the positions that are extremes of the Jacobi integral may become stable, as it happens just in the
case of the Lagrangian points.
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Fig. 3.18 System of
coordinates relative to the
Lagrangian point Li , with
i = 1, . . . , 5

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ ′ − 2 ẏ′ = x ′
(

∂2U

∂x2

)

◦
+ y′
(

∂2U

∂x∂y

)

◦
+ z′
(

∂2U

∂x∂z

)

◦
,

ÿ′ + 2ẋ ′ = x ′
(

∂2U

∂x∂y

)

◦
+ y′
(

∂2U

∂y2

)

◦
+ z′
(

∂2U

∂y∂z

)

◦
,

z̈′ = x ′
(

∂2U

∂x∂z

)

◦
+ y′
(

∂2U

∂y∂z

)

◦
+ z′
(

∂2U

∂z2

)

◦
,

(3.81)

where we made use of the Schwarz18 theorem about the interchangeability of the
differentiation order. Taking into account the expression for U , we obtain:

∂2U

∂x2
= 1 − 1 − μ

r31
− μ

r32
+ 3(1 − μ)

(x + μ)2

r51
+ 3μ

(x − 1 + μ)2

r52
,

∂2U

∂y2
= 1 − 1 − μ

r31
− μ

r32
+ 3(1 − μ)

y2

r51
+ 3μ

y2

r52
,

∂2U

∂z2
= − (1 − μ)

r31
− μ

r32
, (3.82)

∂2U

∂x∂y
= 3y

[
(1 − μ)(x + μ)

r51
+ μ(x − 1 + μ)

r52

]
,

∂2U

∂x∂z
= ∂2U

∂y∂z
= 0.

Here we have taken into account the coordinates of the massive points: x1 = −μ,
x2 = 1 − μ; see (3.53) to understand the reason for the signs. The equations in
the last line of (3.82) were obtained using the condition z◦

i = 0. We will use these

18 Hermann Schwarz (1843–1921) was a German mathematician, known for his work in complex
analysis.



3.5 Stability of the Lagrangian Points 113

expression (3.82) to derive the equations for stability of Lagrangian points in the
following sections.

From the theory of differential equations we know that the general solutions of
systems of the type (3.81) are given by linear combinations of exponential functions.
If the coefficients at the exponents are real, the solutions are monotonically growing
functions19 and, in our case, indicate instability; P tends to move indefinitely away
from the position of equilibrium (although the solution found is no longer valid at
large distances). If instead the coefficients are purely imaginary, the solutions are
periodic (as we see using Euler formulas). In our case, this implies stability, in the
sense that the massless body P is bound to oscillate around the equilibrium position.
In order to be able to translate these general observations into quantitative terms, we
again distinguish two cases.

3.5.2 Collinear Solutions: Points L1, L2 and L3

Let (x◦
Li , 0, 0) be the coordinates of Li , one of the collinear libration points L1, L2,

L3. We calculate the second partial derivatives of the Jacobi potential and substitute
them in (3.81), obtaining:

⎧
⎨

⎩

ẍ ′ − 2 ẏ′ = (1 + 2Ai ) x ′,
ÿ′ + 2ẋ ′ = (1 − Ai ) y′,
z̈′ = −Ai z′,

(3.83)

where:

Ai = 1 − μ

|x◦
Li − x1|3 + μ

|x◦
Li − x2|3 > 0, (3.84)

being x1 and x2 the coordinates of the massive points P1 and P2. We note that the last
of (3.83) is independent of the others. It is the differential equation characteristic of
a harmonic oscillator with period 2π/

√
Ai . Thus, in relation to the motion along the

z-axis, the libration point is stable. The fact is not surprising because the potential
Jacobi U is symmetric with respect to the plane xy.

We now solve the system of the first two (3.83). The solutions must be of the type:

x ′ = α eλt ,

y′ = β eλt .
(3.85)

Replacing in (3.83), we obtain a system of linear equations in the unknowns α and
β: ⎧

⎨

⎩

[
λ2 − (1 + 2Ai )

]
α − 2λ β = 0,

2λ α +
[
λ2 − (1 − Ai )

]
β = 0.

(3.86)

19 The sign of the coefficient does not matter in how the solution must be indifferent to the direction
of time.



114 3 The Three-Body Problem

This is a homogeneous system, but we are not interested to the trivial solutions:
x ′ = y′ ≡ 0. The Cramer condition for the existence of non-trivial solutions requires
that the determinant of the system:

∣∣∣
∣
λ2 − (1 + 2Ai ) −2λ

2λ λ2 − (1 − Ai )

∣∣∣
∣ , (3.87)

vanishes, which implies the equation:

λ4 + (2 − Ai ) λ2 + (1 − Ai )(1 + 2Ai ) = 0, (3.88)

to be satisfied. The general solutions are then:

x ′ = α′eλ1t + α′′eλ2t + α′′′eλ3t + α′′′′eλ4t ,

y′ = β ′eλ1t + β ′′eλ2t + β ′′′eλ3t + β ′′′′eλ4t ,
(3.89)

where λ1, λ2, λ3, and λ4 are the roots of equation (3.88):

λ1,2,3,4 = ±

√√√√−1 +
Ai ∓

√
9A2

i − 8Ai

2
. (3.90)

The Lagrangian points are stable if the eigenvalues λi are imaginary. Indeed, the
general solution can be represented in the form exp

[± (l + ik)
]
. It is periodic if

l = 0 (in view of the Euler formula). For collinear points, from (3.88) and from the
properties of polynomials, we have:

(λ1λ2)(λ3λ4) = (1 − Ai )(1 + 2Ai ). (3.91)

We can see from (3.90) that λ1 = −λ2 and λ3 = −λ4. The request that all roots are
imaginary implies the following condition: λ2

1 = λ2
2 < 0 and λ2

3 = λ2
4 < 0 which,

according to (3.91), corresponds to: −1/2 < Ai < 1. Since for collinear points it is
always20 Ai > 1, it means that all collinear solutions are unstable.

This is understandable from the physical points of view. Points L2, L3 are the
result of equilibrium between centrifugal and gravitational forces which act in oppo-
site directions. The gravitational forces are decreasing with the distance from the
attractive masses but the centrifugal forces are increasing, and thus the equilibrium
is unstable. The point L1, which is located between two masses, is also unstable
due to gravitational forces acting in opposite directions. The small perturbations will
induce a motion towards one of the massive bodies.

20 Cf. H.C. Plummer, On periodic orbits in the neighbourhood of centres of libration, Mont. Not.
of Roy. astr. Soc., 62, 6, 2001. A numerical test up to μ 	 0.1 is easily done by coupling the (3.13)
with the coordinates of L1, L2, and L3 in (3.105).
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3.5.3 Triangular Solution: Points L4 and L5

The libration points are identified by the condition |−−→P1P| = |−−→P2P| = 1. Taking this
into account, we calculate the second partial derivatives of the Jacobi potential using
(3.82) and the coordinates for the triangular Lagrangian points: x◦ = 0.5 − μ, y◦ =
±√

3/2, together with the condition (r1)◦ = (r2)◦, that is:

(
∂2U

∂x2

)

◦
= 3

4
,

(
∂2U

∂y2

)

◦
= 9

4
,

(
∂2U

∂z2

)

◦
= −1, (3.92)

(
∂2U

∂x∂y

)

◦
= 3

√
3

4
(1 − 2μ),

(
∂2U

∂x∂z

)

◦
=
(

∂2U

∂y∂z

)

◦
= 0.

Replacing them in (3.81), we obtain:

ẍ ′ − 2 ẏ′ = 3

4
x ′ +

√
27

4
(1 − 2μ) y′,

ÿ′ + 2ẋ ′ =
√
27

4
(1 − 2μ) x ′ + 9

4
y′,

z̈′ = −z′.

(3.93)

Again, the third equation can be solved separately; the solution is a periodic motion
with period 2π . This proves that any libration point is stable with respect to z. To
solve the system of the first two (3.93), we proceed as in the previous case. The
characteristic equation:

λ4 + λ2 + 27

4
μ (1 − μ) = 0, (3.94)

has 4 roots:

λ1,2,3,4 = ±
√

−1 ± √
1 − 27μ (1 − μ)

2
. (3.95)

If:
1 − 27μ (1 − μ) ≥ 0, (3.96)

all the roots of (3.94) are purely imaginary and thus the solutions of (3.93) are
periodic, i.e., stable. If instead the condition (3.96) is not verified, the roots are
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complex; they contain a real part that generally makes the solutions unstable. The
inequality (3.96) is verified by the values of the mass of P2 meeting the conditions:

μ ≥ 1

2
+
√

23

108
, μ ≤ 1

2
−
√

23

108
. (3.97)

Since we have assumed 0 < μ ≤ 0.5, only the second condition is meaningful. In
conclusion, the linear theory shows that the Lagrangian points L4 and L5 are stable
(within the limits of the restricted problem) if and only if the condition:

μ � 0.0385, that is:
m2

m1
= μ

1 − μ
� 0.0401, (3.98)

is satisfied. This is largely verified by the Sun-Jupiter system, which justifies the
existence of the families of the Greek and Trojan small planets mentioned at the
beginning of this chapter (see Fig. 3.1).

3.6 The Variation of the Elements

As an introduction of the perturbation theory, here we consider the effects of an
external force acting on an isolated system of two points P1 and P of massesm1 and
m respectively, assuming that m is negligible compared to m1. This means that:

1. the center of gravity B of the system coincides with the position of P1, and
2. the reduced mass μ coincides the mass m of P .

With these simplifications the two-body problem is reduced to that of a single body
subjected to a central force exerted by a fixed point, which allows us to apply a
perturbing force only to P , neglecting the effects on P1 [9].

The idea behind the method devised by Lagrange (see also Sect. 4.12) is straight-
forward: reduce a problem that cannot be solved (or is too complicated) to another
one with known solution, exploiting this solution in order to simplify the equations
of motion of the original problem. To better understand the Lagrangian strategy, we
can reverse the reasoning starting from a problem with the known solution, which
we will call unperturbed problem; classically it will be the two-body problem. The
presence of additional forces perturbs the simple problem, complicating it or even
making it unsolvable.

The originality of the Lagrangian approach lies especially in the choice of vari-
ables that are constant of the motion in the unperturbed problem. In this way, in
fact, we are reduced to studying the variation of these constants (in the unperturbed
motion) under the action of the perturbing terms. Therefore, any simplifications intro-
duced for solving these equations will not affect the accuracy of the solution of the
unperturbed problem, which stays as the zero-th order approximation of the solution
of the perturbed problem.
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Fig. 3.19 Sketch showing the concept of osculating orbit. At each time t , the position and the
velocity in the true orbit allow us to define a Keplerian orbit tangent to the true one. It is the orbit
that the point P would follow if at t the perturbation would cease abruptly. At t + dt , the osculating
orbit has typically different elements. In conclusion, the true orbit can be traced through the points
of osculation of a Keplerian orbit with variable elements

We must introduce the concept of osculating orbit.21 To this end, let us consider
a perturbed Keplerian motion, i.e., the motion of a point P subject to a central
Newtonian force and to an additional force that perturbs themotion otherwise conical.
If, for some reason, at the generic instant of time t the disturbance ceases suddenly,
P will meet the conditions to start a purely Keplerian motion with initial conditions
given by the position and velocity at the time t . So, at any t there is a conical orbit
which is tangent to the perturbed one, corresponding to the trajectory that the point P
would take if the disturbance ceased (Fig. 3.19). In other words, we can interpret the
perturbed motion of P as a succession of infinitesimal elements of conical motion
corresponding to initial conditions which are continuous functions of time.

The elements of the Keplerian orbit of P relative to P1, indicated with the symbol
f , depend on the position and velocity coordinates of P , i.e., f = f (x, y, z, ẋ, ẏ, ż).
The corresponding variation is given by:

d f

dt
= ∂ f

∂x
ẋ + ∂ f

∂y
ẏ + ∂ f

∂z
ż + ∂ f

∂ ẋ
ẍ + ∂ f

∂ ẏ
ÿ + ∂ f

∂ ż
z̈. (3.99)

At the epoch t , the coordinates of position and velocity of P on the true and osculating
orbits coincide while, in the presence of a perturbation J with components Fx , Fy

and Fz , the accelerations assume different values:

ẍ = ẍ◦ + Fx ,

ÿ = ÿ◦ + Fy, (3.100)

z̈ = z̈◦ + Fz .

Here we have made the convention, valid also in the following, that the variables
with the subscript represent quantities relative to the osculating orbit. From (3.99) to

21 The etymology is from the Latin verb ‘osculari’, meaning to kiss.
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Fig. 3.20 Relation between
true and osculating orbits.
The latter contains the plane
(x, y)

(3.100), we obtain the fundamental variational equation:

(
d f

dt

)

∗
= d f

dt
−
(
d f

dt

)

◦
= ∂ f

∂ ẋ
Fx + ∂ f

∂ ẏ
Fy + ∂ f

∂ ż
Fz, (3.101)

remembering that (d f/dt)◦ ≡ 0 .
To make explicit the previous equation for the six orbital elements, we choose a

convenient inertial reference system, placing the origin in P1 (which is also the center
of gravity of the system) and the xy plane coincident with that of the osculating orbit
at the time t . We also orient the x-axis as

−→
BP(t), so that:

x(t) = r(t),
y(t) = z(t) = 0.

(3.102)

Moreover, let σ and π be the inclination and the longitude of the node of the true
orbit on the osculating one (Fig. 3.20). Obviously:

σ(t) = π(t) = 0. (3.103)

In other words, σ(t) can be thought of as the inclination of the osculating orbit
corresponding to an epoch t �= t , countedwith respect to the osculating orbit at t = t ;
π is then the node identified by the two orbits counted starting from the position of
P at t .

In an infinitesimal interval of t , the angular momentum per unit mass of P is the
same on the true and the osculating orbit; from (2.65) it is:

h′ =
√
m1 G a (1 − e2), (3.104)

with components:
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h′
x = yż − z ẏ = h′ sin σ sin π,

h′
y = zẋ − x ż = −h′ sin σ cosπ, (3.105)

h′
z = x ẏ − yẋ = h′ cos σ.

Here we have used the definition of angular momentum with respect to the coor-
dinates (x, y, z). Moreover, in the second terms the three components have been
written using the angular coordinates σ and π . Their derivatives with respect to
time, calculated at t in which the (3.102) and (3.103) hold, are:

(
dh′

x

dt

)

◦
= 0,

(
dh′

y

dt

)

◦
= −h′

(
dσ

dt

)

◦
, (3.106)

(
dh′

z

dt

)

◦
=
(
dh′

dt

)

◦
.

They coincide with the components of the momentum of the external force, M =
r × F, evaluated at the same time t through (3.102) and (3.103). Since, according to
(3.102), r = x i, the momentum of the force can be written as:

M = r × F = (x i) × (Fx i + Fy j + Fzk) = −r Fz j + r Fy k. (3.107)

It is apparent that:

(
dh′

x

dt

)

◦
= 0,

(
dh′

y

dt

)

◦
= −h′

(
dσ

dt

)

◦
= −r Fz, (3.108)

(
dh′

z

dt

)

◦
=
(
dh′

dt

)

◦
= r Fy .

from where: (
1

h′
dh′

y

dt

)

◦
= −

(
dσ

dt

)

◦
= −r

Fz

h′ = −r W,

(
1

h′
dh′

z

dt

)

◦
=

(
1

h′
dh′

dt

)

◦
= r

Fy

h′ = r T,

(3.109)

having used (3.108) and placing, as it is common practice in the literature:



120 3 The Three-Body Problem

Fig. 3.21 Osculating orbit at the epochs t and t + dt

S = Fx/h′ radial component,
T = Fy/h′ transverse component,
W = Fz/h′ normal component.

(3.110)

3.6.1 Variation of the Orientation Elements

Nowconsider Fig. 3.21,wherewe have represented the osculating orbits at the epochs
t and t + dt . The fixed reference frame makes it possible to evaluate the orientation
elements i , � and ω. Applying the law of sines to the spherical triangle PP ′P ′′ (see
Appendix A), indicating with u the true anomaly counted from the ascending node
on the fixed reference system at t = t , u = θ + ω, we have (see the law of sines in
(A.15)):

sin(i + di) sin(d�) = sin u sin(dσ), (3.111)

or, remembering that, if dx is infinitesimal, sin(dx) = dx and cos(dx) = 1 are exact
relations at the first order:

sin(i + di) d� = sin u dσ, (3.112)

from which, using the first of (3.109):
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d�

dt
= sin u csc i

dσ

dt
= r W sin u csc i. (3.113)

From the same triangle we obtain also:

cos(i + di) = cos i cos(dσ) − sin i sin(dσ) cos u, (3.114)

which simplifies as follows:

cos(i + di) − cos i = − sin i cos u dσ,

cos i cos(di) − sin i sin(di) − cos i = − sin i cos u dσ, (3.115)

di = cos u dσ.

Therefore, in terms of time derivatives and using the first one of the (3.109), we have:

di

dt
= cos u

dσ

dt
= r W cos u. (3.116)

From Fig. 3.21 or using the (A.9), it is:

cos(u + du) = cos u cos(d�) + sin u sin(d�) cos i, (3.117)

from which, with the same procedure previously detailed:

du

dt
= dθ

dt
+ dω

dt
= −r W sin u cot i. (3.118)

3.6.2 Variation of the Geometric Elements

The variation of the semi-major axis is obtained by differentiating the (2.68) with
respect to time (using (2.67) to make explicit the expression of energy) and remem-
bering that m/m1 	 0:

1

a2
da

dt
= 2

r2
dr

dt
+ 2

G m1

(
dx

dt

d2x

dt2
+ dy

dt

d2y

dt2
+ dz

dt

d2z

dt2

)
. (3.119)

At the time of osculation, the coordinates of P are x = r and y = z = 0, and therefore
the velocity components are immediately provided by (3.105):
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dx

dt
= dr

dt
,

dy

dt
= h′

r
, (3.120)

dz

dt
= 0.

Moreover, through (3.100), it is:

d2x

dt2
= −G m1

x

r3
+ Fx = −Gm1

r2
+ Fx ,

d2y

dt2
= −G m1

y

r3
+ Fy = Fy, (3.121)

d2z

dt2
= −G m1

z

r3
+ Fz = Fz,

and replacing these expressions in (3.119):

1

a2
da

dt
= 2

G m1

(
dr

dt
Fx + h′

r
Fy

)
. (3.122)

Since at the epoch t the velocity has the same value, dr/dt , on the true and the
osculating orbits, we can evaluate it on the latter by differentiating with respect to
time the reciprocal of the radius vector (see (2.64) and (2.65)):

r = a (1 − e2)

1 + e cos θ
= h′2

G m1 (1 + e cos θ)
. (3.123)

It is:
1

r2
dr

dt
= G m 1e sin θ

h′2
dθ

dt
. (3.124)

Since r2
dθ

dt
= h′, we finally have:

dr

dt
= G m1

e sin θ

h′ , (3.125)

which, replaced in (3.122), gives:

da

dt
= 2a2

G m1

[(
G m1 e sin θ

)
S +
(
h′2

r

)

T

]

. (3.126)

The variation of the mean motion n is calculated starting from the expression of the
third Kepler law (2.83) which, in our hypotheses, becomes:
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4π2

P2
= G m1

a3
, (3.127)

that is:

n =
√
G m1

a3
. (3.128)

Differentiating with respect to time and using (3.126), it is:

dn

dt
= − 3√

G m1 a

[
(
G m1 e sin θ

)
S +
(
h′2

r

)

T

]

. (3.129)

In order to obtain the variation of the eccentricity, we operate the replacement:

e = sinψ (0 ≤ ψ < π/2), (3.130)

legitimated only if the orbit is elliptical or parabolic, since then 0 ≤ e ≤ 1. With the
new variable, the derivative of the angular momentum per unit mass with respect to
time (3.104) becomes:

dh′

dt
= G m1

2h′

[
cos2 ψ

da

dt
− 2a sinψ cosψ

dψ

dt

]
, (3.131)

from where:

dψ

dt
= 1

2a sinψ cosψ

[
cos2 ψ

da

dt
− 2h′

G m1

dh′

dt

]
, (3.132)

or, using the second of the (3.109) and the (3.126):

dψ

dt
= 1

a sinψ cosψ

[(
a2 sinψ cos2 ψ sin θ

)
S +

+ 1

G m1

(

a2 cos2 ψ
h′2

r
− h′2r

)

T

]

, (3.133)

and again, using the (2.48) and (2.52):

dψ

dt
= a cosψ

[(
sin θ
)
S + ( cos θ + cos E

)
T
]
. (3.134)

From (3.130) it is:
de

dt
= cosψ

dψ

dt
, so:
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de

dt
= a cos2 ψ

[(
sin θ
)
S + ( cos θ + cos E

)
T
]

=
= a(1 − e2)

[(
sin θ
)
S + ( cos θ + cos E

)
T
]
. (3.135)

Now we calculate the variation of the true anomaly with respect to the osculating
orbit at t , remembering that, also in the latter, θ is a function of time. For our purposes
it is sufficient to differentiate with respect to time the relation (2.48) so modified:

h′2

G m1r
= 1 + sinψ cos θ, (3.136)

keeping the radius vector r constant, as its variation is the same in the true and the
osculating orbit:

dθ

dt
= 1

sinψ sin θ

[
cosψ cos θ

dψ

dt
− 2h′

G m1r

dh′

dt

]
. (3.137)

From this latter, using the (3.131) and (3.134), after some manipulation we obtain:

dθ

dt
= 1

sinψ

[(
h′2

G m1
cos θ

)

S −
(

r + h′2

Gm1

)

sin θ T

]

. (3.138)

Through (3.118) we finally have:

dω

dt
=
[

− h′2

G m1
cos θ cscψ

]

S +

+
[
G m1r + h′2

G m1
sin θ cscψ

]

T −
[
r sin(θ + ω) cot i

]
W. (3.139)

In order to calculate the variation of the time of passage at the periapsis t◦, we refer
the mean anomaly to the epoch of osculation, t :

M = n(t − t◦) = n
(
t − t
)+ n

(
t − t◦

) = n
(
t − t
)+ M◦. (3.140)

The total derivative of this expression with respect to time (including the variations
of the orbital elements) is:

dM

dt
= dM◦

dt
+ dn

dt
(t − t) + n. (3.141)

Since, on the osculating orbit, it is (dM/dt)◦ = n, the expression:
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(
dM

dt

)

∗
= dM◦

dt
+ dn

dt
(t − t), (3.142)

represents the variation of the mean anomaly due to the variation of the orbital
elements only and not due to the progression of time; remember that M changes on
the osculating orbit too. The expression (3.142) consists of two terms, which give
the variation of the zero point (dM◦/dt) and of the velocity (dn/dt) respectively. To
compute the variation of M with respect to time, we differentiate the Kepler equation
(2.54), allowing only the variations of the orbital elements (a fact that we remark by
putting the subscript ∗ at the time derivatives):

(
dM

dt

)

∗
= (1 − sinψ cos E)

(
dE

dt

)

∗
− sin E cosψ

dψ

dt
, (3.143)

which, through (2.52), becomes:

(
dM

dt

)

∗
= r

a

(
dE

dt

)

∗
− sin E cosψ

dψ

dt
. (3.144)

In order to obtain the variation of the eccentric anomaly, we differentiate the relation
(2.52) with respect to time:

(
dr

dt

)

∗
= (1 − sinψ cos E)

da

dt
+ a sinψ sin E

(
dE

dt

)

∗
+

− a cos E cosψ
dψ

dt
. (3.145)

Since the variation of r is null when passing from the osculating orbit to the true one
((dr/dt)∗ = 0), from (3.145) we have:

(
dE

dt

)

∗
= 1

a sinψ sin E

[
a cosψ cos E

dψ

dt
− r

a

da

dt

]
. (3.146)

Substituting in (3.144) and using (3.126) and (3.134), after some simplifications we
obtain:

(
dM

dt

)

∗
= −

[

2r cosψ − h′2

G m1
cotψ cos θ

]

S +

−
[(

h′2

G m1
+ r

)

cotψ sin θ

]

T . (3.147)
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Table 3.1 Variations of the orbital elements for a perturbed two-body problem with m 
 m1.
S, T , W are the components of the perturbing force expressed as accelerations per unit angular
momentum and p = a(1 − e2) is the focal parameter

radial transverse normal
component S component T component W

da

dt
2a2e sin θ 2p

a2

r
0

de

dt
p sin θ p (cos θ + cos E) 0

di

dt
0 0 r cos(θ+ω)

dΩ
dt

0 0 r sin(θ+ω) csc i

dω

dt
−p

e
cos θ

(r + p)
e

sin θ −r sin(θ+ω) cot i

dθ

dt

p

e
cos θ −(r + p)

e
sin θ 0

We again remember that (3.147) represents the variation of the mean anomaly due
to the variation of the elements of the osculating orbit. The total variation the true
anomaly is instead given by the integral of (3.141):

M = M◦ + n◦(t − t) +
∫ t

t
n dt +

∫∫ t

t

dn

dt
dt2, (3.148)

where the integration constants result from the condition M = M◦ for t = t .
In conclusion, we have calculated the variation of the orbital elements of a two-

bodyproblem (m 
 m1) in the condition inwhich the perturbation acts on the bodyof
negligiblemass only. The formulas for the infinitesimal variations as a function of the
instantaneous components of the perturbing force per units mass22 are summarized
in Table 3.1.

22 These planetary equations were presented by Gauss in his Theoria motus Corporum Coelestium
in Sectionibus Conicis Solem Ambientium, appeared in 1809.
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Chapter 4
Analytical Mechanics

Pierre-Simon Laplace
All the effects of Nature are only the mathematical consequences
of a small number of immutable laws.

In Chap. 1 we mentioned the fundamental fact that the N -body problem cannot be
solved for N ≥ 3, even in the simplified case of massive points subject to internal
gravitational forces only, since it is not possible to predict the evolution of the system
over an arbitrarily long time interval starting from assigned initial conditions. A
similar difficulty is normally encountered also in the two-body problem if the forces
in play are different from just (1.1). This case occurs, for example, when:

1. the two bodies have finite dimensions, unless they are spherically symmetric;
2. the forces, while conservative, are not only gravitational;
3. the two bodies move in a resistant medium;
4. the system is not isolated.

In each one of the circumstances listed above, the equations of motion cannot be
generally integrated in a rigorous way andmust be treated by techniques that approx-
imate the solutions. It is therefore convenient to abandon the Newtonian formalism
in favor of a more advanced physical-mathematical language. The reason is that usu-
ally the solutions of the equations of motion are sought by series expansions of the
variables, suitably truncated at some level of approximation (which normally repre-
sents a compromise between precision and degree of difficulty). The new formalism
reaches its maximum effectiveness when it is possible to treat the assigned problem
as a perturbed case of a simpler one, which has already an analytical solution. It is
then convenient that the expansions applies only to the perturbing terms, so that the
truncation does not also affect the solution of the unperturbed problem. To this end
we need to introduce new variables such that, when the perturbing forces vanish (that
is, when the approximation is reduced to the zero-th order), they act as constants (in
the sense that they do not explicitly depend on time). In this chapter we will consider
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the methods of analytic mechanics with which it is possible to obtain this important
result, limiting ourselves to the aspects pertinent to celestial mechanics [1, 2].

We approach the Hamilton-Jacobi formalism by first considering the principle of
virtual work.1 It expresses the most general condition for the static equilibrium of a
mechanical system using the concept of virtual displacement, δr. This change in the
configuration of a system must obey the following rules. It must be:

1. instantaneous (dt = 0),
2. infinitesimal (δr2 must be negligible), and
3. arbitrary, though respecting the constraints, which must be considered fixed at the

time of the virtual displacement, since dt = 0.

The principle states that thework done by the forces for virtual displacements from an
equilibrium position, δW = ∑

i fi δri , is non-positive. In particular, if the constraints
are smooth and reversible, the necessary and sufficient condition for the equilibrium
is that δW = 0: the virtual work of the acting forces must be zero.

The principle of virtual work encompasses the whole statics. It allows to assert
that, if the system of the acting forces is conservative, at equilibrium the potential
energy W = −U must be stationary (either maximum or minimum), and minimum
if the equilibrium is stable (theorem of Lagrange-Dirichlet); [3]. Note the extreme
generality of this principle, which can be applied without knowing the structures
of the bodies and without specifying the reference system. Appendices Q and R
provide a detailed and complementary description, including a quick presentation
of Maupertuis2 and Fermat3 principles, emphasizing once again the link between
conservation laws and symmetries (Noether4 theorem).

In conclusion, we can stipulate that the static behaviour of a conservative system
is entirely described by the potential function, which is indeed the unique tool to
identify the system itself. To achieve such unification in dynamics, it is necessary to

1 The principle of virtual work, which has an ancient origin, was formulated in the language of
calculus by Johann Bernoulli in 1717 and in a more effective form by Lagrange in 1811.
2 Pierre Louis Moreau de Maupertuis (1698–1759): French physicist, mathematician, and philoso-
pher who introduced Newtonianism in France. He was the first to formulate, in contrast to Fermat
and Leibniz, the mechanical principle of least action, bringing finalism in physics.
3 Pierre de Fermat (1601–1665): together with Descartes, one of the two greatest mathematical
minds of the first mid of the 17-th century, was among the founders of analytic geometry and of
the probability theory, precursor of differential calculus and of modern number theory, famous
for the his conjecture, also known as the last Fermat theorem: for any integer n > 2, the equation
an + bn = cn has no solution in the domain of positive integer numbers but the trivial one; ‘It
is impossible to separate a cube into two cubes, or a fourth power into two fourth powers, or in
general, any power higher than the second, into two like powers. I have discovered a trulymarvelous
proof of this, which this margin is too narrow to contain’, he annotated in Latin at the margin of
Diophantus’ Arithmetica. The theorem remained unproven for over 300 years until 1994. Fermat
authored also the principle according to which, in order to move from the point A to B, light chooses
the trajectory requiring the least amount of time.
4 Amalie Emmy Noether (1882–1935) was a German mathematician. She worked in mathematical
physics and abstract algebra. Her name is linked to the 1915 theorem which, in the field of theoret-
ical physics, highlights a deep connection between symmetries and conservation laws. Cf. note at
Sect. 4.8.
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find an appropriate state function (equivalent to the potential in the static problem
for conservative systems), which describes the behavior of each mechanical system,
remembering that the dynamic state of a system depends not only on coordinates
but also on velocities. The function sought has the name of a great mathematician of
Italian origin, Joseph Louis Lagrange.

4.1 The Function of Lagrange

Consider a system of N massive points Pi ofmassmi .Making use of the d’Alembert5

principle, at any time t and for each point Pi we consider the link between the force
fi (assuming that the virtual work of internal forces is zero) and the variation of the
momentum pi = mi ṙi :

fi − ṗi = 0 (i = 1, . . . , N ). (4.1)

Formally, ṗi is a force (of inertia) which balances the active force. At any moment,
the condition:

N∑

i=1

(fi δri − ṗi δri ) = 0, (4.2)

is verified on the true trajectory. Therefore it is also:

∫ t2

t1

N∑

i=1

(fi δri − ṗi δri )dt = 0. (4.3)

Integrating by parts the second term of (4.3) and assuming that, at the limits of the
integration interval, the virtual displacements are null (since all the virtual trajectories
share the same extremes), we have (see also Appendix R):

5 This principle is equivalent to second principle of Newton’s dynamics. The Frenchmathematician,
physicist, philosopher, and astronomer, Jean-Baptiste LeRond d’Alembert (1717–1783), was one of
the major protagonists of Enlightenment. Together with Denis Diderot, he conceived and directed
the famous Encyclopédie, the first volume of which appeared in 1751. D’Alembert treated the
sections of mathematics and sciences until he abandoned the project because of disagreements with
Diderot. A friend of Lagrange and historical opponent of Alexis Claude Clairaut, he was a member
and then perpetual secretary of the Académie française.
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∫ t2

t1

[
N∑

i=1

(

fiδri + pi
d

dt
(δri )

)

− d

dt

(
N∑

i=1

piδri

)]

dt =

=
∫ t2

t1

N∑

i=1

(

fiδri + pi
d

dt
(δri )

)

dt −
N∑

i=1

piδri

∣
∣
∣
∣
∣

t2

t1

=

=
∫ t2

t1

N∑

i=1

(

fiδri + pi
d

dt
(δri )

)

dt = 0. (4.4)

Let us verify that, at the first order, it is:

δ

(
d

dt
ri

)

= d

dt
(δri ), (4.5)

by comparing, at the same time t , not only the position ri of Pi on the true trajectory
with the varied position ri + δri , but also the true velocity ṙi with that on the virtual
trajectory:

(ṙi )virt = ṙi + δṙi = ṙi + δ

(
dri
dt

)

. (4.6)

Since the velocity on the virtual trajectory can be written also as:

(ṙi )virt = d

dt
(ri + δri ) = ṙi + d

dt
(δri ), (4.7)

the comparisonwith (4.6) proves the identity (4.5).Note that the above considerations
are made possible only because, by hypothesis, the virtual displacements occur at a
constant time and they hold only at the first order.

That said, the variation of the kinetic energy, Ti = 1

2
mi ṙ2i , is:

δTi = mi ṙiδ
(
dr

dt

)

= piδṙi = pi
d

dt
(δri ) (i = 1, . . . , N ). (4.8)

Through this relation, noting that δWi = fiδri gives the virtual work of the external
forces on Pi , the variational integral (4.4) takes the compact form:

∫ t2

t1

N∑

i=1

(
δWi + δTi

)
dt =

∫ t2

t1

(
δW + δT

)
dt = 0, (4.9)

where T and W represent the total kinetics energy and the work respectively.
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Equation (4.9) contains the generalized Hamilton6 principle. It can be rewritten
in the following way:

δ

∫ t2

t1

Tdt +
∫ t2

t1

δWdt = 0, (4.10)

with the purpose of enlightening that, in general, the identity:

∫ t2

t1

δWdt = δ

∫ t2

t1

Wdt, (4.11)

is not verified. Remember that δW is not the variation of W but the infinitesimal
work accomplished by the active forces in the transition from the true to the varied
trajectory. In particular, if the system is conservative, it results: δW = δU, where U
is the potential, and (4.9) becomes simply:

∫ t2

t1

(δT + δU)dt = δ

∫ t2

t1

(T + U)dt = δ

∫ t2

t1

Ldt = 0. (4.12)

The function:

L(r1, r2, . . . , rN , ṙ1, ṙ2, . . . , ṙN , t) = L(r, ṙ, t) = T + U = T − W, (4.13)

is called Lagrange function or simply Lagrangian. The (4.9) is summarized by saying
that the first variation of the integral of the Lagrange function for a conservative
system is zero on the true trajectory, i.e.:

δ

∫ t2

t1

L(r, ṙ, t) dt = 0. (4.14)

4.2 Lagrange Function in Generalized Coordinates

The configuration of a mechanical system made of N massive points Pj is described
at any time t by 3N coordinates xi , with an appropriate rule for the index i to establish
the association between coordinates andpoints; for instance theCartesian coordinates
of Pj could be (x3 j−2, x3 j−1, x3 j ), with j = 1, . . . , N . They need not be necessarily
Cartesian; for instance, they could be spherical or cylindrical. Obviously, not all the
3N coordinates are required if the system is constrained. In the presence of a number

6 SirWilliamRowanHamilton (1805–1865) was an Irish mathematician, physicist, and astronomer.
Child prodigy, his greatest contribution is perhaps the reformulation of Newtonian mechanics in a
new form (Hamiltonian mechanics), which is part of rational mechanics and has proven central to
the modern study of classical field theories such as electromagnetism.
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m of time-independent holonomic constraints,7 given by m < 3N equations of the
type:

g j (ξ1, ξ2, . . . , ξ3N ) = 0 ( j = 1, . . . ,m), (4.15)

we say that the system has n = (3N−m) degrees of freedom. In this case, the knowl-
edge of the configuration of the system at any time t requires only n generalized
coordinates, qk (k=1, . . . , n). They are given by the old coordinates ξi through:

qk = gk(ξ1, ξ2, . . . , ξ3N ) (k = 1, . . . ,m). (4.16)

The functions (4.16) can be completely arbitrary, provided they are independent of
each other.

Consider the set of 3N functions g given by (4.15) and (4.16), and assume that their
first partial derivatives are continuous, so that we can apply the Schwarz8 theorem.
They form a system of equations:

gh(ξ1, ξ2, . . . , ξ3N ) =
{
0 for h = 1, . . . ,m,

qh−m for h = m+1, . . . , 3N ,
(4.17)

corresponding to a point transformation with Jacobian9 matrix:

J = ‖ai j‖ =
∥
∥
∥
∥

∂gi
∂ξ j

∥
∥
∥
∥ , (4.18)

with characteristic n. Thus, the coordinates ξi can be all expressed as functions of n
generalized coordinates:

ξi = ξi (q1, q2, . . . , qn) (i = 1, . . . , 3N ). (4.19)

By differentiating the equations of the system (4.17) with respect to time, a new set
of equations is obtained:

dgh
dt

=
3N∑

i=1

∂gh
∂ξi

ξ̇i =
{
0 for h = 1, . . . ,m,

q̇h−m for h = m+1, . . . , 3N ,
(4.20)

7 A system constraint is said to be holonomic if it can be expressed by an equation involving the
coordinates qi and the time t only (that is, not the momenta pi or higher derivatives of time).
8 Herman Schwarz (1843–1921): German mathematician, known for his contributions to functional
analysis, differential geometry, and calculus of variations. Student of KarlWeierstrass (1815–1897),
among his students he had Ernst Zermelo (1871–1953), then famous for his work on the foundations
of mathematics.
9 The matrix of all the first partial derivatives of a function defined in an Euclidean space, linearly
approximates a differentiable function around a given point, extending the notion of derivation to
multivariate functions.
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which link linearly the time derivatives of the original coordinates to those of the
generalized coordinates through coefficients depending on ξ1, . . . , ξ3N . Therefore,
since the kinetic energy is a positive defined10 quadratic form in ξ̇i , it remains so
also in q̇k , with coefficients depending on q. Finally, if the force field depends on a
general potential U which is only a function of the generalized coordinates q and of
their derivatives q̇ , we obtain the following important result: the Lagrangian function,
expressed in generalized coordinates, depends only on the coordinates themselves
and their first derivatives with respect to time. Explicit dependence on time is also
possible, if this is required by the constraints or by the potential function; but this is
not the case for us here.

In conclusion, the Lagrangian function, L(q, q̇, t), represents the state function
wewere looking for. Besides a possible explicit dependence on time, it depends on 2n
coordinates, which are exactly twice the spatial coordinates, those which identify the
system in space at any moment. No surprise, though, if we think that the Lagrangian
function describes the dynamic state of the system. Even in Newtonian formalism,
the description of motion requires both positions (coordinates in numbers equal to
the degrees of freedom of the system) and the corresponding velocities.

4.3 The Equations of Lagrange

We now want to apply the Hamilton principle (4.14) to the Lagrangian function
in generalized coordinates.11 To this purpose, we must calculate the variation of
L(q, q̇, t), remembering that it occurs at a constant time. It is:

δL =
n∑

k=1

∂L

∂qk
δqk +

n∑

k=1

∂L

∂q̇k
δq̇k, (4.21)

or, according to (4.14):

∫ t2

t1

δL dt = −
∫ t2

t1

n∑

k=1

(
d

dt

∂L

∂q̇k
− ∂L

∂qk

)

δqk dt = 0. (4.22)

In fact, through an integration by parts and recalling that the variations are assumed
to vanish at the extremes of integration, it is readily verified that:

10 Second degree homogeneous integer rational function, as easily verified inCartesian and spherical
coordinates. For more details see Sect. 5.5.
11 For a discussion on variational principles and their applications to mechanics, see Appendix Q.
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∫ t2

t1

∂L

∂q̇k
δq̇k dt =

∫ t2

t1

∂L

∂q̇k

d

dt
(δqk) dt =

= −
∫ t2

t1

d

dt

∂L

∂q̇k
δqk dt + ∂L

∂ q̇k
δqk

∣
∣
∣
∣

t2

t1

= −
∫ t2

t1

d

dt

∂L

∂q̇k
δqk dt. (4.23)

Since the virtual displacements, δqk , are completely arbitrary and independent, (4.22)
can only be satisfied if the n equations:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= 0 (k = 1, . . . , n), (4.24)

hold at any time t . They are called second kind Lagrange equations12 and exist
for systems (both continue and made of discrete elements) subject to holonomic
constraints and to forces depending on a potential.

We want now put ourselves in the condition where the Lagrangian function does
not depends explicitly on time, (∂L/∂t ≡ 0), so that the total derivative is:

d

dt
L(q, q̇) =

n∑

k=1

q̇k
∂L

∂qk
+

n∑

k=1

q̈k
∂L

∂ q̇k
. (4.25)

Since the kinetic energy T is a second degree homogeneous function in q̇k , the Euler
theorem (cf. Sect. 5.5.1) assures that:

2T =
n∑

k=1

q̇k
∂T

∂q̇k
. (4.26)

Therefore, if the potentialU is assumed to be independent of the generalized velocity
(as it is the gravitational potential), then:

2T =
n∑

k=1

q̇k
∂T

∂q̇k
=

n∑

k=1

q̇k
∂

∂q̇k
(T + U) =

n∑

k=1

q̇k
∂L

∂ q̇k
. (4.27)

Differentiating the (4.27) with respect to time:

2
dT

dt
=

n∑

k=1

q̇k
d

dt

∂L

∂q̇k
+

n∑

k=1

q̈k
∂L

∂ q̇k
, (4.28)

12 These equations are often called Euler-Lagrange equations because both mathematicians worked
around Lagrange’s original idea.
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and using the second kind Lagrange equations (4.24), we have:

2
dT

dt
=

n∑

k=1

q̇k
∂L

∂qk
+

n∑

k=1

q̈k
∂L

∂ q̇k
. (4.29)

The latter, subtracted to (4.25), gives:

dL

dt
− 2

dT

dt
= d

dt
(T + U) − 2

dT

dt
= −

(
dT

dt
− dU

dt

)

= 0, (4.30)

and, by integration with respect to time:

T − U = E = const. (4.31)

Therefore, the principle of energy conservation is a direct consequence of the
Lagrange equations. Finally, by rewriting the kinetic energy through the relation
(4.26), we observe that the total energy of the system:

E = T − U = 2 T − L = const, (4.32)

can be expressed by the Lagrangian function:

E = T − U =
n∑

k=1

(

q̇k
∂L

∂q̇k

)

− L(q, q̇), (4.33)

where we used the fact that U does not depend on q̇k .

4.4 The Hamilton Function

In the previous section we have shown that the Lagrangian function depends on n
generalized coordinates qk and on the corresponding n generalized velocities q̇k .
However, these n pairs of dynamic coordinates are not completely independent; in
fact, the virtual displacement δqk affects the virtual variation δq̇k of the corresponding
velocity coordinate. In order to make up for the need of expressing the Lagrangian
function by 2n coordinates that are totally independent, we reconsider (4.14) using
the new notation now introduced:

∫ t2

t1

δL dt =
∫ t2

t1

[

δL − d

dt

(
n∑

k=1

pkδqk

)]

dt = 0. (4.34)
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The generalized moments, pk , so called for analogy with the Newtonian formalism
(they have the dimensions of moments if qk are lengths), can be arbitrarily chosen,
provided that the product pkqk has the dimension of an action, in what the integral:

∫ t2

t1

d

dt

(
n∑

k=1

pkδqk

)

dt =
n∑

k=1

pkδqk

∣
∣
∣
∣
∣

t2

t1

, (4.35)

is in any case vanishing due to the cancellation of δqk at the extremes of the integration
interval. Through the relation (4.21), once the time derivative is made explicit, the
variational integral (4.34) becomes:

∫ t2

t1

n∑

k=1

[(
∂L

∂q̇k
− pk

)

δq̇k +
(

∂L

∂qk
− ṗk

)

δqk

]

dt = 0. (4.36)

If we place:

pk = ∂L

∂q̇k
, (4.37)

the coefficient of δq̇k in the integrand function is canceled, and therefore it no longer
matters what the variation of q̇k is for the purpose of the variational integral. Fur-
thermore, when we have chosen the definition of pk given by (4.37), for (4.36) to be
satisfied it is necessary that:

ṗk = ∂L

∂qk
. (4.38)

This last result can be derived as a consequence of the application of the general-
ized coordinates and of (4.24). In fact, (4.37) is the natural extension in Lagrangian
coordinates of the Newtonian expression:

mivi = pi = 1

2

∂

∂vi

(
n∑

k=1

mkv
2
k

)

= ∂

∂vi
(T + U) = ∂L

∂vi
, (4.39)

under the assumption that ∂U/∂vi ≡ 0. By inserting into (4.24) the definition of
generalized moment given by (4.37), we immediately have its derivative with respect
time (4.38).
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Through (4.37) and (4.38), which are called first kind equations, the total differ-
ential of the Lagrangian function (4.21) becomes:

dL(q, q̇, t) =
n∑

k=1

∂L

∂qk
dqk+

n∑

k=1

∂L

∂q̇k
dq̇k + ∂L

∂t
dt =

=
n∑

k=1

ṗkdqk +
n∑

k=1

pkdq̇k + ∂L

∂t
dt, (4.40)

where the derivative with respect to time is included. Replacing the second term in
the right-hand side of (4.40) with the expression:

n∑

k=1

pk dq̇k = d

(
n∑

k=1

pk q̇k

)

−
n∑

k=1

q̇kdpk, (4.41)

it is:

d

(
n∑

k=1

pk q̇k − L

)

= −
n∑

k=1

ṗk dqk +
n∑

k=1

q̇k dpk − ∂L

∂t
dt. (4.42)

The function:

H(p, q, t) =
n∑

k=1

pk q̇k − L(q, q̇, t), (4.43)

of which the expression (4.42) is the total differential, takes the name of Hamiltonian
function. The comparison with (4.33), modified using (4.37), immediately proves
that, if the Hamiltonian function does not depend explicitly on time (property that
must be shared by the associated Lagrangian function), it expresses the total energy
of the system.

Formally, the total differential of H is given by:

dH(p, q, t) =
n∑

k=1

∂H

∂qk
dqk +

n∑

k=1

∂H

∂pk
dpk + ∂H

∂t
dt. (4.44)

By comparing with (4.42), it follows that:

ṗk = −∂H
∂qk

q̇k = ∂H
∂pk

⎫
⎪⎬

⎪⎭
(k = 1, . . . , n), (4.45a)

∂H

∂t
= −∂L

∂t
. (4.45b)
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The 2n differential equations of the first order (4.45a) are called Hamilton or canon-
ical equations to emphasize their extraordinary symmetry and formal simplicity.
Through these equations it is immediate to prove that:

dH

dt
= ∂H

∂t
. (4.46)

In fact:

dH

dt
= ∂H

∂t
+

n∑

k=1

(
∂H

∂qk
q̇k + ∂H

∂pk
ṗk

)

=

= ∂H

∂t
+

n∑

k=1

(− ṗk q̇k + ṗk q̇k) = ∂H

∂t
. (4.47)

Hence, if H does not explicitly depend on time (∂H/dt = 0), it remains constant
during motion. The comparison of (4.33) with (4.43) shows that, under the assump-
tion that the potential does not depend on velocity,H is the total energy of the system.
The canonical equations can be deduced directly from the Hamilton principle (4.14),
rewritten as:

δ

∫ t2

t1

L dt = δ

∫ t2

t1

(
n∑

k=1

pkq̇k − H(p, q, t)

)

dt = 0, (4.48)

using the (4.43). By expanding the variation at the right-hand side:

∫ t2

t1

(
n∑

k=1

pkδq̇k +
n∑

k=1

q̇kδpk −
n∑

k=1

∂H

∂qk
δqk −

n∑

k=1

∂H

∂pk
δpk

)

dt = 0, (4.49)

and integration by parts, we obtain:

∫ t2

t1

n∑

k=1

pkδq̇kdt =
∫ t2

t1

n∑

k=1

pk
d

dt
(δqk)dt =

=
n∑

k=1

pkδqk

∣
∣
∣
∣
∣

t2

t1

−
∫ t2

t1

n∑

k=1

ṗkδqkdt = −
∫ t2

t1

n∑

k=1

ṗkδqkdt, (4.50)

with which the variational integral becomes:

∫ t2

t1

[
n∑

k=1

(

− ṗk − ∂H

∂qk

)

δqk +
n∑

k=1

(

q̇k − ∂H

∂pk

)

δpk

]

dt = 0. (4.51)
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Given the independence of the virtual variations δqk and δpk of the 2n dynamical
coordinates, this equation is identically satisfied if and only if all the coefficients are
zero, that is, if the 2n (4.45a) are verified, which is what we wanted to prove.

Finally, we note that the Hamilton function is always defined but for an additive
term corresponding to the total derivative with respect to time of an arbitrary function
of coordinates, conjugate moments, and time, f (q, p, t). In fact, let it be:

H′ = H + d f

dt
, (4.52)

where f is any function. It results:

δ

∫ t2

t1

⎛

⎝
n∑

k=1

pkq̇k − H′
⎞

⎠ dt = δ

∫ t2

t1

⎛

⎝
n∑

k=1

pkq̇k − H

⎞

⎠ dt − δ

∫ t2

t1

d f

dt
dt =

= δ

∫ t2

t1

⎛

⎝
n∑

k=1

pkq̇k − H

⎞

⎠ dt − δ( f

∣
∣
∣
∣
∣
∣

t2

t1

) =

= δ

∫ t2

t1

⎛

⎝
n∑

k=1

pkq̇k − H

⎞

⎠ dt, (4.53)

since the variations of f at the extremes of the integration interval are null: δ f1 =
f [q(t1), p(t1), t1] = δ f2 = f [q(t2), p(t2), t2] = 0. Therefore, bothH andH′ satisfy
the same variational integral.

4.5 Some Considerations on the Canonical Equations

Let H(p, q, t) be the Hamiltonian function of a mechanical system with n degrees
of freedom. The system of 2n first order differential equations:

q̇k = ∂H
∂pk

ṗk = −∂H
∂qk

⎫
⎪⎬

⎪⎭
(k = 1, . . . , n), (4.54)

forms the set of equations of motion which replace the n Lagrange equations (4.24).
The solutions are 2n functions of the type:

qk = qk(t, a1, a2, . . . , a2n)

pk = pk(t, a1, a2, . . . , a2n)

}

(k = 1, . . . , n), (4.55)
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which provide position and velocity of each point of the mechanical system at any
time t . Obviously, the integration introduces 2n arbitrary constants, ai , which are
quantified by specifying the initial conditions.

At this point it is legitimate to wonder what the advantages of the new formulation
could be over the ordinaryNewtonian treatment. Indeed, apart from the greater formal
elegance, very often the system (4.54) is more difficult to handle than the classical
equations of motion. We must wait a few paragraphs to appreciate the power of
this new formalism. For the moment we restrict our interest to the relations (4.55).
The original idea of considering the 2n constant ai appearing there as independent
analytic quantities is due to Joseph-Louis Lagrange. Indeed, by solving the system
of equations (4.55) with respect to ai and keeping time in the role of a parameter, we
obtain 2n solutions in the form13:

ai = ai (t, p1, p2, . . . , pn, q1, q2, . . . , qn) (i = 1, . . . , 2n). (4.56)

Equations (4.56) are the inverse of (4.55) and vice versa. In fact, by solving the
system (4.56) with respect to pk and qk , we obtain again the equations of the system
(4.55). Moreover, the arbitrariness of the constants ai is evident, as they can all be
replaced by an equal number of functions of a1, a2, . . . , a2n . We will see later the
importance of this property.

The above considerations show that every HamiltonianH(pi , qi , t) can be associ-
ated with 2n arbitrary functions of generalized coordinates, corresponding conjugate
moments, and possibly time,ai (qi , pi , t), which, by (4.54), have the property of being
constant with time and independent of each other. Each of such functions, which are
called first integrals or constants of motion, satisfies a linear partial differential equa-
tion:

dai
dt

= ∂ai
∂t

+
n∑

k=1

∂ai
∂pk

ṗk +
n∑

k=1

∂ai
∂qk

q̇k = 0, (4.57)

which, through the Hamilton equations (4.54), becomes:

∂ai
∂t

−
n∑

k=1

∂ai
∂pk

∂H

∂qk
+

n∑

k=1

∂ai
∂qk

∂H

∂pk
= 0. (4.58)

This is the equation that must be satisfied by each first integral, since it does not
contain any arbitrary constant. Conversely, if the function ai is solution (4.58), it
also satisfies the (4.57) and therefore is a first integral.

In conclusion, the determination of a system of 2n first integrals (4.54) coincides
with the determination of 2n particular solutions (4.58). The problem is therefore
reduced to the consideration of this partial differential equation.

13 Recall that the solution exists because the 2n functions qk and pk are independent; hence the
determinant of their Jacobian matrix is different from zero.
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4.6 Constants of Motion, Poisson and Lagrange Brackets

The importance (4.58) is such that we want to rewrite it in a more compact and
convenient way through an operator named Poisson14 brackets. Given two functions,
f (q, p, t) and g(q, p, t), of n coordinates, relative moments, and time, the Poisson
brackets operator is:

( f, g) =
n∑

k=1

∂ f

∂pk

∂g

∂qk
−

n∑

k=1

∂ f

∂qk

∂g

∂pk
. (4.59)

Another very useful operator, named Lagrange brackets, is given by the expression:

[ f, g] =
n∑

k=1

∂pk
∂ f

∂qk
∂g

−
n∑

k=1

∂qk
∂ f

∂pk
∂g

. (4.60)

For more details on these two operators and theirs properties, see Appendix M or
consult the specialized literature,15 e.g. [4, 5].

With the notation now introduced, (4.58) rewrites as:

∂ai
∂t

+ (H, ai ) = 0. (4.61)

Therefore, the necessary and sufficient condition for a function ai (q, p, t) to be a
first integral for the Hamiltonian H is that it satisfies (4.61).

Consider the Poisson bracket between two first integrals, (ai , a j ). It is easy to
verify that it too satisfies the condition (4.61). Indeed, through the first of the (M.8)
we have:

∂

∂t
(ai , a j ) = (

∂ai
∂t

, a j ) + (ai ,
∂a j

∂t
), (4.62)

and, through the Jacobi identity (M.3):

(H, (ai , a j )) = ((a j ,H), ai ) + ((H, ai ), a j ) =
= − ((H, a j ), ai ) + ((H, ai ), a j ),

(4.63)

14 SiméonDenis Poisson (1781–1840): Frenchmathematician and physicist, protected by Lagrange
and especially by Laplace, who considered him almost like a son. He investigated electrostatics,
magnetism, dynamics of solids, and analytical mechanics. His name is connected to the general-
ization of the famous Laplace equation (see 5.21) and to the homonym law of (discrete) probability
distribution, P(x), describing the occurrence (in a given time interval) of x random events in a

process with a mean λ: P(x) = e−λλx

x ! . We recall that the standard deviation, which expresses the

deviation of the measures from the mean value, is equal to
√

λ.
15 It isworth noting that rules other than the one adopted here for the signs are present in the literature;
a fact that may generate some minor difficulties and some doubts when comparing different texts.
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where we have used the second of the (M.2). Summing up, we obtain:

∂

∂t
(ai , a j ) + (H, (ai , a j )) =

= (
∂ai
∂t

, a j ) + ((H, ai ), a j ) − (
∂a j

∂t
, ai ) − ((H, a j ), ai ) =

= (
∂ai
∂t

+ (H, ai ), a j ) − (
∂a j

∂t
+ (H, a j ), ai ) = 0, (4.64)

since both ai and a j satisfy (4.61). This proves the so-called Poisson theorem: every
Poisson bracket between two first integrals is in turn a first integral.

It is useful to clarify right away the range of applicability of this theorem. Obvi-
ously it cannot always give us a new first integral, since the total number is limited to
2n. Therefore, the result can sometimes be of no relevance, being a constant or just a
function of the integrals generating it. In some cases, however, the Poisson theorem
actually provides genuinely new first integrals. As an example, consider two of the
three area integrals (1.20):

a1 =
n∑

k=1

mk(yk żk − zk ẏk),

(4.65a)

a2 =
n∑

k=1

mk(zk ẋk − xk żk).

By applying the definition of Poisson bracket, we have:

(a1, a2) =
n∑

k=1

mk(xk ẏk − yk ẋk), (4.65b)

which is precisely the third area integral. With that the cycle closes; the application
of the Poisson theorem to any pair of the three previous integrals (4.65) does not
provide any new one.

We now state the following theorem: the Lagrange bracket between two constants
of motion ai and a j :

[ai , a j ] =
n∑

k=1

∂pk
∂ai

∂qk
∂a j

−
n∑

k=1

∂qk
∂ai

∂pk
∂a j

, (4.66)

is independent of time and function of the constants only. We prove it in Appendix
M, showing that the theorem has a general validity.

Concerning the integrals of motion, unlike the Poisson brackets, the Lagrange
brackets do not provide any new results under any condition. In fact, in order to
form the function [ai , a j ] it is required the knowledge of all the (4.55), that is,
the knowledge of the solution to the problem. However, the two operators are so



4.7 Lagrange and Poisson Brackets for the Elliptical Orbit 145

strictly related to be considered one the inverse of the other. This relation between
Poisson and Lagrange brackets can be interpreted in terms of matrices, as we show
in Appendix M.

4.7 Lagrange and Poisson Brackets for the Elliptical Orbit

As a useful example, we now calculate the Lagrange brackets for the elements of
an elliptical orbit in the framework of the two-body problem, and from them the
Poisson brackets (see also [2, 6]). Meanwhile we note that the two-body problem,
as placed at Sect. 2.1, has 3 degrees of freedom (as many as they are the independent
coordinates of one of the two points only, since the other point is considered to be
fixed). Therefore, the solution requires 2 × 3 = 6 integrals of motion. They can be,
for example, the six orbital elements introduced in Sect. 2.7:

– the semi-major axis a,
– the eccentricity e,
– the mean anomaly δ◦ = −nt◦ at the epoch t = 0 (used, for convenience, in place
of the time of passage at the periapsis t◦; n is the mean motion),

– the longitude of the ascending node �,
– the distance of the periapsis from the ascending node ω , and
– the inclination of the orbital plane i .

The first three elements are dimensional in that they characterize the orbit on its
plane. In the following we will indicate them generically with the symbol Dj ( j =
1, . . . , 3). The other three elements orient the orbit in space. We will represent them
by the symbol Oj ( j = 1, . . . , 3). We now recall that the Lagrange brackets are
anticommutative operators (see Appendix M); therefore, we will have to calculate
only a total16 of 15 (and not 6 × 6), three of which are of the type:

[Oi , Oj ] =
3∑

k=1

(
∂pk
∂Oi

∂qk
∂Oj

− ∂pk
∂Oj

∂qk
∂Oi

)

(i �= j = 1, . . . , 3), (4.67)

other three of the type:

[Di , Dj ] =
3∑

k=1

(
∂pk
∂Di

∂qk
∂Dj

− ∂pk
∂Dj

∂qk
∂Di

)

(i �= j = 1, . . . , 3), (4.68)

and finally nine of the mixed type:

16 To compute the number of independent brackets it is enough to evaluate the number of possible
combinations in which n = 6 elements are paired in groups of m = 2, that is, to calculate the

binomial coefficient
n!

m!(n − m)! .
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Fig. 4.1 Graphycal references to calculate the Lagrange and Poisson brackets for an elliptical orbit

[Oi , Dj ] =
3∑

k=1

(
∂pk
∂Oi

∂qk
∂Dj

− ∂pk
∂Dj

∂qk
∂Oi

)

(i, j = 1, . . . , 3). (4.69)

As generalized coordinates we will use directly the Cartesian coordinates, x , y, and
z, in a generic orthogonal reference system S1 [x, y, z], centered on the focus of the
elliptical orbit where the second massive body is located. We therefore put:

q1 = x,

q2 = y, (4.70)

q3 = z.

The Lagrangian function is:

L = T + U = 1

2
(ẋ2 + ẏ2 + ż2) + G

m1 + m2
√
x2 + y2 + z2

, (4.71)

from where, through (4.37), we obtain the conjugated moments:

p1 = ẋ,

p2 = ẏ, (4.72)

p3 = ż.

We now introduce a second orthogonal reference system, S2 [x ′, y′, z′], concentric
to S1 and such that the plane x ′y′ contains the orbit and the x ′-axis coincides with
the focal axis. This is the orbital reference system. For each point P(x ′, y′) of the
orbit, the following transformation equations hold:

q1 = x = a11 x
′ + a21 y

′,
q2 = y = a12 x

′ + a22 y
′, (4.73)

q3 = z = a13 x
′ + a23 y

′,
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which, after differentiation with respect to time, turn into:

p1 = ẋ = (a11 ẋ
′ + a21 ẏ

′),
p2 = ẏ = (a12 ẋ

′ + a22 ẏ
′), (4.74)

p3 = ż = (a13 ẋ
′ + a23 ẏ

′).

The direction cosines, ai j , are given by the relations (B.10a) of Appendix B, having

placed δ = ̂x ′′x ′ = ω:

a11 = cos� cosω − sin� sinω cos i,

a12 = sin� cosω + cos� sinω cos i,

a13 = sinω sin i,

a21 =− cos� sinω − sin� cosω cos i,

a22 =− sin� sinω + cos� cosω cos i, (4.75)

a23 = cosω sin i,

a31 = sin� sin i,

a32 =− cos� sin i,

a33 = cos i.

Theywere also given inChap.2 for the two-body problem (equations (2.123)) and are
repeated here for convenience. Through the (4.73) and (4.74), the partial derivatives
with respect to the orbital elements appearing in the bracket (4.67), (4.68), and (4.69),
may be written as:

∂qk
∂Oi

= x ′ ∂a1k
∂Oi

+ y′ ∂a2k
∂Oi

, (4.76a)

∂pk
∂Oi

= ẋ ′ ∂a1k
∂Oi

+ ẏ′ ∂a2k
∂Oi

, (4.76b)

∂qk
∂Di

=a1k
∂x ′

∂Di
+ a2k

∂y′

∂Di
, (4.76c)

∂pk
∂Di

=a1k
∂ ẋ ′

∂Di
+ a2k

∂ ẏ′

∂Di
, (4.76d)

where the index k varies from 1 to 3. In fact, x ′ and y′ are independent from �, ω,
and i , while the direction cosines, ai j , are independent of a, e, and δ◦.

Let us now calculated the bracket of the type (4.67) between the orientation
elements Oi (i = 1, . . . , 3). It is:
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[Oi , Oj ]=
3∑

k=1

[(

ẋ ′ ∂a1k
∂Oi

+ ẏ′ ∂a2k
∂Oi

)(

x ′ ∂a1k
∂Oj

+ y′ ∂a2k
∂Oj

)

−

−
(

ẋ ′ ∂a1k
∂Oj

+ ẏ′ ∂a2k
∂Oj

)(

x ′ ∂a1k
∂Oi

+ y′ ∂a2k
∂Oi

)]

=

= (x ′ ẏ′ − ẋ ′y′)
3∑

k=1

(
∂a2k
∂Oi

∂a1k
∂Oj

− ∂a2k
∂Oj

∂a1k
∂Oi

)

. (4.77)

The quantity: h = (x ′ ẏ′ − ẋ ′y′), is the angular momentum per unit mass or, through
the (2.65) and (2.83):

x ′ ẏ′ − ẋ ′y′ =
√
G (m1 + m2) a (1 − e2) = n a2

√
1 − e2. (4.78)

Replacing this latter in (4.77) and expanding the summation, we obtain the three
Lagrange brackets for the orientation elements. The partial derivatives of the direction
cosines relative to the elements Oi can be calculated directly from the relations (4.75).
We have three groups of 9 derivatives each:

∂a11
∂�

= −a12,
∂a12
∂�

= a11,
∂a13
∂�

= 0,

∂a21
∂�

= −a22,
∂a22
∂�

= a21,
∂a23
∂�

= 0,

∂a31
∂�

= −a32,
∂a32
∂�

= a31,
∂a33
∂�

= 0,

(4.79a)

∂a11
∂ω

= a21,
∂a12
∂ω

= a22,
∂a13
∂ω

= a23,

∂a21
∂ω

= −a11,
∂a22
∂ω

= −a12,
∂a23
∂ω

= −a13,

∂a31
∂ω

= 0, ∂a32
∂ω

= 0, ∂a33
∂ω

= 0,

(4.79b)

∂a11
∂i = a31 sinω,

∂a12
∂i = a32 sinω,

∂a13
∂i = a33 sinω,

∂a21
∂i = a31 cosω,

∂a22
∂i = a32 cosω,

∂a23
∂i = a33 cosω,

∂a31
∂i = sin� cos i, ∂a32

∂i = − cos� cos i, ∂a33
∂i = − sin i.

(4.79c)

At this point, all that remains is to complete the somewhat laborious but conceptually
simple calculation. For example, if we set Oi = � and Oj = i , using the (4.77),
(4.79a), and (4.79c), we readily have:

[�, i] = n a2
√
1 − e2

[
(a12 a31 − a11 a32) cosω + (a21 a32 − a22 a31) sinω

]
=

= n a2
√
1 − e2

[
a23 cosω + a13 sinω

]
= n a2

√
1 − e2 sin i. (4.80)

Similarly, it is immediate to verify that:
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[ω,�] = [i, ω] = 0. (4.81)

We now calculate the brackets of the type (4.68). In consequence of (4.76c) and
(4.76d), it is:

[Di , Dj ] =
3∑

k=1

[(

a1k
∂ ẋ ′

∂Di
+ a2k

∂ ẏ′

∂Di

)(

a1k
∂x ′

∂Dj
+ a2k

∂y′

∂Dj

)

−

−
(

a1k
∂ ẋ ′

∂Dj
+ a2k

∂ ẏ′

∂Dj

)(

a1k
∂x ′

∂Di
+ a2k

∂y′

∂Di

)]

=

= (a211 + a212 + a213)

(
∂ ẋ ′

∂Di

∂x ′

∂Dj
− ∂ ẋ ′

∂Dj

∂x ′

∂Di

)

+

+ (a221 + a222 + a223)

(
∂ ẏ′

∂Di

∂y′

∂Dj
− ∂ ẏ′

∂Dj

∂y′

∂Di

)

+
+ (a11a21 + a12a22 + a13a23) ×

×
(

∂ ẏ′

∂Di

∂x ′

∂Dj
− ∂ ẋ ′

∂Dj

∂y′

∂Di
+ ∂ ẋ ′

∂Di

∂y′

∂Dj
− ∂ ẏ′

∂Dj

∂x ′

∂Di

)

, (4.82)

or, through the relations (B.12) of Appendix B due to the orthogonality of the refer-
ence system:

[Di , Dj ] =
(

∂ ẋ ′

∂Di

∂x ′

∂Dj
− ∂ ẋ ′

∂Dj

∂x ′

∂Di
+ ∂ ẏ′

∂Di

∂y′

∂Dj
− ∂ ẏ′

∂Dj

∂y′

∂Di

)

. (4.83)

To make this expression explicit, recall that, according to the (2.51a):

x ′ =r cos θ = a (cos E − e),
(4.84)

y′ =r sin θ = a
√
1 − e2 sin E,

where θ and E are the true and the eccentric anomalies. Moreover, since from (2.84)
we have:

dE

dt
= n

1 − e cos E
, (4.85)

it is also:

ẋ ′ =−
√
G(m1 + m2)

a

sin E

1 − e cos E
,

(4.86)

ẏ′ =
√
G(m1 + m2)

a

√
1 − e2 cos E

1 − e cos E
.

Given the above result, it is immediate to calculate the partial derivatives which
appear in (4.83). Moreover, since the Lagrange brackets do not depend explicitly on
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time, we can evaluate them at an arbitrary epoch. We choose the time of passage
at the periapsis t = t◦, since in this way: E = 0, and r = a(1 − e). Concerning the
derivative with respect to δ◦, we must remember that:

M = n
(
t − t◦

) = nt + δ◦ = E − e sin E, (4.87)

so:
∂E

∂δ◦
= 1

1 − e cos E
. (4.88)

We have:
∂x′

∂a
= 1 − e,

∂x′

∂e
= −a,

∂x′

∂δ◦
= 0,

∂y′

∂a
= 0,

∂y′

∂e
= 0,

∂y′

∂δ◦
= a

√
1 + e

1 − e
,

(4.89)
∂ẋ′

∂a
= 0,

∂ẋ′

∂e
= 0,

∂ẋ′

∂δ◦
= − n a

(1 − e)2
,

∂ẏ′

∂a
= −n

2

√
1 + e

1 − e
,

∂ẏ′

∂e
=

n a

(1 − e)
√

1 − e2
,

∂ẏ′

∂δ◦
= 0,

and thus, replacing in (4.83):

[a, e] = [e, δ◦] = 0, [δ◦, a] = −na

2
. (4.90)

Let us now calculate the 9 brackets of the type (4.69). Through the relations (4.76a),
(4.76b), (4.76c), and (4.76d), it is:

[Oi , Dj ] =
3∑

k=1

[(

ẋ ′ ∂a1k
∂Oi

+ ẏ′ ∂a2k
∂Oi

)(

a1k
∂x ′

∂Dj
+ a2k

∂y′

∂Dj

)

+

−
(

a1k
∂ ẋ ′

∂Dj
+ a2k

∂ ẏ′

∂Dj

)(

x ′ ∂a1k
∂Oi

+ y′ ∂a2k
∂Oi

)]

=

=
(

a11
∂a11
∂Oi

+ a12
∂a12
∂Oi

+ a13
∂a13
∂Oi

)(

ẋ ′ ∂x ′

∂Dj
− x ′ ∂ ẋ ′

∂Dj

)

+

+
(

a21
∂a21
∂Oi

+ a22
∂a22
∂Oi

+ a23
∂a23
∂Oi

)(

ẏ′ ∂y′

∂Dj
− y′ ∂ ẏ′

∂Dj

)

+

+
(

a11
∂a21
∂Oi

+ a12
∂a22
∂Oi

+ a13
∂a23
∂Oi

)(

ẏ′ ∂x ′

∂Dj
− y′ ∂ ẋ ′

∂Dj

)

+

+
(

a21
∂a11
∂Oi

+ a22
∂a12
∂Oi

+ a23
∂a13
∂Oi

)(

ẋ ′ ∂y′

∂Dj
− x ′ ∂ ẏ′

∂Dj

)

. (4.91)

From the (B.12) of Appendix B it follows that:
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3∑

k=1

a1k
∂a1k
∂Oi

=
3∑

k=1

a2k
∂a2k
∂Oi

= 0, (4.92)

while:
3∑

k=1

a1k
∂a2k
∂Oi

= −
3∑

k=1

a2k
∂a1k
∂Oi

. (4.93)

Thus, the (4.91) reduces to:

[Oi , Dj ] = −
3∑

k=1

a1k

(
∂a2k
∂Oi

)(

ẋ ′ ∂y′

∂Dj
+ y′ ∂ ẋ ′

∂Dj
− x ′ ∂ ẏ′

∂Dj
− ẏ′ ∂x ′

∂Dj

)

=

= −
3∑

k=1

a1k

(
∂a2k
∂Oi

)
∂

∂Dj
(ẋ ′y′ − x ′ ẏ′). (4.94)

The derivatives with respect to Dj appearing at the secondmember of (4.94) become:

∂

∂a
(ẋ ′y′ − x ′ ẏ′) = −n a

2

√
1 − e2,

∂

∂e
(ẋ ′y′ − x ′ ẏ′) = + n a2 e√

1 − e2
, (4.95)

∂

∂δ◦
(ẋ ′y′ − x ′ ẏ′) = 0.

The expressions containing the direction cosines are instead made explicit using the
(4.75) and the (4.79a), (4.79b), (4.79c), together with the (B.9) of Appendix B:

3∑

k=1

a2k
∂a1k
∂�

=−a21 a12 + a22 a11 = a33 = cos i,

3∑

k=1

a2k
∂a1k
∂i

=
(
a21 a31 + a22 a32 + a23 a33

)
sinω = 0, (4.96)

3∑

k=1

a2k
∂a1k
∂ω

=a21 a21 + a22 a22 + a23 a23 = 1.

Combining the previous results in (4.94) it is:

[�, a] = − n a

2

√
1 − e2 cos i, (4.97a)

[�, e] = n a2e√
1 − e2

cos i, (4.97b)
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Table 4.1 Non-null
Lagrange brackets [a, δ◦] = −[δ◦, a] =

n a

2

[a, Ω] = −[Ω, a] =
n a

√
1 − e2

2
cos i

[a, ω] = −[ω, a] =
n a

√
1 − e2

2

[e, Ω] = −[Ω, e] =
− n a2e√

1 − e2
cos i

[e, ω] = −[ω, e] =
− n a2e√

1 − e2

[Ω, i] = −[i, Ω] = n a2
√

1 − e2 sin i

[�, δ◦] = 0, (4.97c)

[i, a] = 0, (4.97d)

[i, e] = 0, (4.97e)

[i, δ◦] = 0, (4.97f)

[ω, a] = − n a

2

√
1 − e2, (4.97g)

[ω, e] = n a2e√
1 − e2

, (4.97h)

[ω, δ◦] = 0. (4.97i)

The Table4.1 collects all the Lagrange brackets different from zero; all the other
brackets that can build with the elements of orbit are null.

By applying the property that the matrices of Lagrange and Poisson brackets are
one the reciprocal of the other, it is easy to calculate the Poisson brackets for the
same elements of the elliptical orbit. First we calculate the determinant of the square
matrix whose elements are the Lagrange bracket:

∣
∣
∣
∣A′∣∣∣∣ =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 [a,�] [a, δ◦] [a, ω]
0 0 0 [e,�] 0 [e, ω]
0 0 0 [i,�] 0 0

−[a,�] 0 −[i,�] 0 0 0
−[a, δ◦] 0 0 0 0 0
−[a, ω] −[e, ω] 0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (4.98)

It results:
|A′| = ([a, δ◦][e, ω][i,�])2, (4.99)
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Table 4.2 Non-null Poisson brackets

(a, δ◦) = −[a, δ◦]−1 = − 2
n a

(e, δ◦) = [a, ω] {[a, δ◦][e, ω]}−1 = − 1 − e2

n a2e

(e, ω) = −[e, ω]−1 =

√
1 − e2

n a2e

(Ω, i) = [Ω, i]−1 = − 1

n a2
√

1 − e2 sin i

(i, ω) = [e, Ω]{[e, ω][Ω, i]}−1 = − cot i

n a2
√

1 − e2

and therefore, by applying the relation (M.26), all the Poisson brackets are obtained.
Those that are non-null, listed in Table4.2, are five in total and, analogous to the
Lagrange brackets, depend only on a, e, and i . Note, however, that the bracket:

(δ◦, i) = [e, �][a, ω]{[a, δ◦][e, ω][�, i]}−1 − [a,�]{[a, δ◦][i, �]}−1 = 0, (4.100)

vanishes only after we have made explicit the Lagrange brackets which it is formed
from.

Finally, we observe that, in consequence of the third relation (M.2), from Table
4.2 it is immediate to compute the Poisson brackets for a different set of elements of
an elliptical orbit that are obtained as linear combinations of a, e, δ◦, �, ω, and i .

4.8 Canonical Transformations

A situation in which the solution of the Hamilton equations (4.45a) is particularly
simple occurs when the Hamiltonian function is a constant of motion:

dH

dt
= ∂H

∂t
= 0, (4.101)

and it is also independent of the generalized coordinates qk (k=1, . . . , n), which for
this reason are said to be cyclic.17 In this case, in fact, it results:

17 In this context, we often refer to Noether’s symmetries, through a theorem applied in many
fields of physics. Demonstrated in 1915 and published three years later, it states that to every
differentiable symmetry of the action of a physical system it corresponds a conservation law. In
other words, to each continuous transformation which leaves the Lagrangian function unchanged
(symmetric transformation), it corresponds a function that does not varies during the time evolution
of the system.We have already made an indirect use of this property in the Chap. 1 when, in relation
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ṗk = −∂H

∂qk
= 0, (4.102)

that is:
pk = βk = const, (4.103)

for any value of the index k. Moreover, being: H = H(p1, p2, . . . , pn) =
H(β1, β2, . . . , βn), it must be also:

q̇k = ∂H

∂βk
= ωk = const, (4.104)

or:
qk = ωk t + αk . (4.105)

Equations (4.103) and (4.105) solve completely the problem of the motion repre-
sented by the Hamiltonian H indicated above.

At this point it is appropriate to ask whether such a condition has only a mere
academic value. We might indeed guess that, in real situations, the conditions nec-
essary for the generalized coordinates to be all cyclic are never realized. We shall
see, instead, that the suspicion is not founded and that it is always possible, through
a suitable transformation of coordinates, to find a reference system whose coordi-
nates are all cyclic. Meanwhile, it is worth to remember that a mechanical system
can be described by an infinite number of coordinate systems, defined by arbitrary
transformation equations of the type:

qk =qk(Q1, Q2, . . . , Qn, P1, P2, . . . , Pn, t)
(k = 1, . . . , n), (4.106)

pk = pk(Q1, Q2, . . . , Qn, P1, P2, . . . , Pn, t)

which require only that the Jacobian determinant is different from zero so that the
system (4.106) is invertible, that is, it can be solved with respect to Qi and Pi :

Qi =Qi (q1, q2, . . . , qn, p1, p2, . . . , pn, t)
(i = 1, . . . , n). (4.107)

Pi = Pi (q1, q2, . . . , qn, p1, p2, . . . , pn, t)

Through the (4.107) it is possible to replace the original dynamical coordinates
qk and pk with a new set of coordinates Qi and Pi , that transform the Hamilton
function H(p, q, t) into H′(P, Q, t). The latter can possibly have an analytical
form that is more convenient to our purposes. We, for example, are not interested in
transformations whatever, but only in the subset of those capable of keeping, in the
new coordinates, the canonical form (4.45a) of the Hamilton equations:

to the N -body problem, we proved the existence of 10 first integrals through the system invariances
to translations, rotations, and changes of the time origin.
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Q̇i = ∂H′

∂Pi (i = 1, . . . , n). (4.108)

Ṗi =−∂H′

∂Qi

Transformations meeting this requirement are called canonical or contact; all the
others are useless even if capable of making the coordinates cyclic, since they do not
allow us to exploit the advantages of canonicity.

4.8.1 Characteristic Function

At this point we need to remember that the Hamilton equations are a consequence
of the variational principle (4.48). Using the most general form for the integrand
function (4.53), it writes as:

∫ t2

t1

δ

[
n∑

k=1

(pkq̇k) − H(p, q, t) + d

dt
f (q, p, t)

]

dt = 0. (4.109)

In fact, as shown at the end of Sect. 4.4, the integrand of (4.48), i.e., the Lagrangian
function, depends on an addictive constant which is the total time derivative of an
arbitrary function f (q, p, t). Therefore, if the transformation given by the system
(4.106) or (4.107) is canonical, the new Hamiltonian H′(P, Q, t) must satisfy the
general condition:

∫ t2

t1

δ

[
n∑

k=1

(Pk Q̇k) − H′(P, Q, t) + d

dt
f ′(Q, P, t)

]

dt = 0. (4.110)

This proves that the arguments of the integrals (4.109) and (4.110) must coincide. In
other words, if the transformation is canonical, then:

d

dt
f ′(Q, P, t) − d

dt
f (q, p, t) =

=
n∑

k=1

pkq̇k −
n∑

k=1

Pk Q̇k − H(p, q, t) + H′(P, Q, t). (4.111)

Let us place:
F = f ′(Q, P, t) − f (q, p, t), (4.112)

from where, through (4.111):

d

dt
F =

n∑

k=1

pkq̇k −
n∑

k=1

Pk Q̇k − H(p, q, t) + H′(P, Q, t). (4.113)
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Contrary towhat the position (4.112) seems to indicate, the function F cannot depend
on all the 4n dynamic coordinates qk , pk , Qk , Pk (k = 1, . . . , n); the transformation
equations (4.107) prove that only 2n of these are independent of each other. Also, the
function F must keep track of both the old and the new coordinates or, which is the
same, of the two functions f and f ′. As suggested by the form of the second member
of (4.113), we assume for the moment that: F = F(q, Q, t); then ∂2F/∂qi∂Qk �= 0.
Expanding the total derivative, we have:

d

dt
F(q, Q, t) =

n∑

k=1

∂F

∂qk
q̇k +

n∑

k=1

∂F

∂Qk
Q̇k + ∂F

∂t
, (4.114)

and, by comparison with (4.113):

pk = ∂

∂qk
F(q, Q, t) (4.115a)

(k = 1, . . . , n),

Pk =− ∂

∂Qk
F(q, Q, t) (4.115b)

H′(P, Q, t) − H(p, q, t) = ∂F(q, Q, t)

∂t
. (4.115c)

These show that the function F(q, Q, t) characterizes completely the canonical
transformation. For this reason it is called characteristic function of the transforma-
tion.

Let us try to elaborate the meaning of the result just obtained. Given a Hamil-
tonian function H(p, q, t), we build a function F depending on the n generalized
coordinates qk , the new coordinates Qk (whose form for the moment is not known),
and possibly the time. We can impose that the function F(q, Q, t) is the generator
of a canonical transformation by asking that its partial derivatives with respect to
qk equal the corresponding conjugate moments pk , as required by (4.115a). This is
equivalent to a constraint on the choice of the new coordinates Qk . If this condi-
tion is verified, the new moments Pk conjugated to the coordinates Qk are given by
(4.115b), and the new form of the Hamiltonian is linked to the old one by (4.115c).
In this way it is certain that the transformation is canonical and, therefore, that the
Hamilton equations in the form of (4.108) hold.

As a further clarification, we consider the following example by introducing the
function:

F(q, Q) =
n∑

k=1

qkQk (k = 1, . . . , n), (4.116)

which does not explicitly depend on time. For it to be characteristic of a canonical
transformation, the n conditions set by replacing the function in (4.115a) must be
verified:

pk = ∂F

∂qk
= Qk (k = 1, . . . , n). (4.117)
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Moreover, the new moments conjugated to Qk will be given by the (4.115b), that is:

Pk = − ∂F

∂Qk
= −qk (k = 1, . . . , n). (4.118)

Finally, since F does not depend on time, the new Hamiltonian will be identical to
the old one:

H′(P, Q) = H(p, q). (4.119)

This canonical transformation is particular as it procures just to the inversion of the
role of the generalized coordinates with that of the moments conjugated to them. A
fact that proves once again the total independence of the dynamical coordinates from
the traditional Newtonian interpretation of terms of space coordinates and moments.

4.8.2 The Various Forms of the Characteristic Function

The transformation by means of the function (4.116) is useful to further clarify the
meaning of the statement (Sect. 4.8) that, besides time, the characteristic function
of a canonical transformation depends on 2n generalized coordinates qk and Qk .
Since the generalized coordinates are interchangeable with their conjugate moments
without affecting the Hamiltonian function and the form of the Hamilton equations,
it is legitimate to expect that the characteristic function of a canonical transformation
can also occur in the forms:

F2 = F2(q, P, t), (4.120a)

F3 = F3(p, Q, t), (4.120b)

F4 = F4(p, P, t). (4.120c)

In fact, noted that:

n∑

k=1

pkq̇k = d

dt

(
n∑

k=1

pkqk

)

−
n∑

k=1

qk ṗk, (4.121a)

n∑

k=1

Pk Q̇k = d

dt

(
n∑

k=1

PkQk

)

−
n∑

k=1

Qk Ṗk, (4.121b)

by replacing the expression
n∑

k=1

Pk Q̇k at the right-hand side of the (4.113) with that

given by the (4.121b), the characteristic functions becomes (4.120a):
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d

dt
F2(q, P, t) = d

dt
F(q, Q, t) + d

dt

(
n∑

k=1

PkQk

)

=

=
n∑

k=1

pkq̇k +
n∑

k=1

Qk Ṗk− H + H′, (4.122)

pk = ∂

∂qk
F2(q, P, t)

(4.123a)
Qk = ∂

∂Pk
F2(q, P, t)

H′(P, Q, t) − H(p, q, t) = ∂F2(q, P, t)

∂t
. (4.123b)

Note that the difference between F2(q, P, t) and F(q, Q, t) is given by a function
of the type (4.116), which is characteristic of the inversion between Qk and Pk .

Proceeding in a quite similar way, we rewrite the expression of the total derivative
of the characteristic function (4.113) via (4.121a):

d

dt
F3(p, Q, t) = d

dt
F(q, Q, t) − d

dt

(
n∑

k=1

pkqk

)

=

= −
n∑

k=1

qk ṗk −
n∑

k=1

Pk Q̇k −H + H′, (4.124)

and thus:

qk =− ∂

∂pk
F3(p, Q, t)

(k = 1, . . . , n), (4.125a)
Pk =− ∂

∂Qk
F3(p, Q, t)

H′(P, Q, t) − H(p, q, t) = ∂F3(p, Q, t)

∂t
. (4.125b)

Finally, through both the relations (4.121a) and (4.121b):

d

dt
F4(p, P, t) = d

dt
F(q, Q, t) − d

dt

(
n∑

k=1

pkqk

)

+ d

dt

(
n∑

k=1

PkQk

)

=

= −
n∑

k=1

qk ṗk +
n∑

k=1

Qk Ṗk − H + H′, (4.126)
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Table 4.3 Characteristic functions

F1(q, Q, t) F2(q, P, t) F3(p, Q, t) F4(p, P, t)

pk =
∂ F1

∂qk
pk =

∂ F2

∂qk
qk = −∂ F3

∂pk
qk = −∂ F4

∂pk

Pk = −∂ F1

∂Qk

Qk =
∂ F2

∂Pk

Pk = −∂ F3

∂Qk

Qk =
∂ F4

∂Pk

H′(P, Q, t) − H(p, q, t) =
∂F1

∂t
=

∂F2

∂t
=

∂F3

∂t
=

∂F4

∂t

or:

qk =− ∂

∂pk
F4(p, P, t)

(k = 1, . . . , n), (4.127a)
Qk = ∂

∂Pk
F4(p, P, t)

H′(P, Q, t) − H(p, q, t) = ∂F4(p, P, t)

∂t
. (4.127b)

The different forms of the characteristic function and of the associated condition
equations are summarized in Table 4.3.

4.8.3 Conditions for Canonicity Using the Poisson and
Lagrange Brackets

Let F(q, Q, t) be the characteristic function of a canonical transformation from the
n dynamical variables qk , pk , to Qk , Pk . We have:

d

dt
Qk =

n∑

i=1

∂Qk

∂qi
q̇i +

n∑

i=1

∂Qk

∂pi
ṗi + ∂Qk

∂t
(k = 1, . . . , n), (4.128)

or, through the Hamilton equations (4.45a) and the definition of the Poisson brackets
(M.1):

d

dt
Qk =

n∑

i=1

∂Qk

∂qi

∂H

∂pi
−

n∑

i=1

∂Qk

∂pi

∂H

∂qi
+ ∂Qk

∂t
= (H, Qk) + ∂Qk

∂t
, (4.129)

whereH = H(p, q, t) is the Hamiltonian function in the old dynamical coordinates.
Similarly:
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d

dt
Pk = (H, Pk) + ∂Pk

∂t
(k = 1, . . . , n). (4.130)

Given that H′(P, Q, t) is the Hamiltonian in the new dynamical coordinates, we
have (Table 4.3):

H(p, q, t) = H′(P, Q, t) − ∂F

∂t
, (4.131)

and thus, for any value of the index k:

(H, Qk)= (H′, Qk) − (
∂F

∂t
, Qk)

(k = 1, . . . , n). (4.132)
(H, Pk)= (H′, Pk) − (

∂F

∂t
, Pk)

Through these expressions, the (4.129) and (4.130) become:

dQk

dt
= (H′, Qk) + ∂Qk

∂t
− (

∂F

∂t
, Qk)

(k = 1, . . . , n). (4.133)dPk
dt

= (H′, Pk) + ∂Pk
∂t

− (
∂F

∂t
, Pk)

Since the considered transformation is canonical, the latter hold for the Hamilton
equations (4.108), with which we can rewrite the first members of (4.133):

∂H′

∂Pk
= (H′, Qk) + ∂Qk

∂t
− (

∂F

∂t
, Qk)

(k = 1, . . . , n). (4.134)
∂H′

∂Qk
=−(H′, Pk) − ∂Pk

∂t
+ (

∂F

∂t
, Pk)

Taking advantage of the property given by (M.10), we can develop the Poisson
brackets appearing at the right-hand side of (4.134):

(H′, Qk)=
n∑

i=1

(Qi , Qk)
∂H′

∂Qi
+

n∑

i=1

(Pi , Qk)
∂H′

∂Pi
,

(4.135)

(H′, Pk)=
n∑

i=1

(Qi , Pk)
∂H′

∂Qi
+

n∑

i=1

(Pi , Pk)
∂H′

∂Pi
,

and, making the characteristic function depend on the new dynamical coordinates:

(
∂F

∂t
, Qk

)

=
n∑

i=1

(Qi , Qk)
∂2F

∂Qi∂t
+

n∑

i=1

(Pi , Qk)
∂2F

∂Pi∂t
,

(4.136)(
∂F

∂t
, Pk

)

=
n∑

i=1

(Qi , Pk)
∂2F

∂Qi∂t
+

n∑

i=1

(Pi , Pk)
∂2F

∂Pi∂t
.
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The latter can be further simplified by recalling that the function F is an exact
differential, and therefore:

∂2F

∂Qi∂t
= ∂2F

∂t∂Qi
= −∂Pi

∂t
,

(4.137)
∂2F

∂Pi∂t
= ∂2F

∂t∂Pi
= ∂Qi

∂t
,

where we made use of Table 4.3. In conclusion, the (4.136) become:

(
∂F

∂t
, Qk

)

=−
n∑

i=1

(Qi , Qk)
∂Pi
∂t

+
n∑

i=1

(Pi , Qk)
∂Qi

∂t
,

(4.138)(
∂F

∂t
, Pk

)

=−
n∑

i=1

(Qi , Pk)
∂Pi
∂t

+
n∑

i=1

(Pi , Pk)
∂Qi

∂t
,

which, replaced in (4.134) together with the (4.135), give:

∂H′

∂Pk
− ∂Qk

∂t
=

n∑

i=1

(Qi , Qk)

[
∂H′

∂Qi
+ ∂Pi

∂t

]

+

+
n∑

i=1

(Pi , Qk)

[
∂H′

∂Pi
− ∂Qi

∂t

]

,

(4.139)

− ∂H′

∂Qk
− ∂Pk

∂t
=

n∑

i=1

(Qi , Pk)

[
∂H′

∂Qi
+ ∂Pi

∂t

]

+

+
n∑

i=1

(Pi , Pk)

[
∂H′

∂Pi
− ∂Qi

∂t

]

.

The 2n equality (4.139) must be collectively satisfied and therefore, given the inde-
pendence of the dynamical coordinates, it is necessary that, for all the values of the
indexes between 1 and n, it is:

(Qi , Qk) = 0,

(Pi , Pk) = 0, (4.140)

(Pi , Qk) = δik,

where δik is the Kronecker symbol. We now prove that the condition of canonicity
expressed by the (4.140), besides being necessary, is also sufficient. We begin using
the (4.140) to simplify the (4.129) and (4.130). Making use of the property (M.10)
applied to the HamiltonianH (i.e., placing f = H), which is thought to be a function
of qk and Pk , we have immediately:
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dQk

dt
= ∂H

∂Pk
+ ∂Qk

∂t
,

(4.141)dPk
dt

=− ∂H

∂Qk
+ ∂Pk

∂t
.

We must prove that these equations occur in canonical form, namely that:

dQk

dt
= ∂H

∂Pk
+ ∂Qk

∂t
= ∂H′

∂Pk
,

(4.142)dPk
dt

=− ∂H

∂Qk
+ ∂Pk

∂t
= − ∂H′

∂Qk
,

where H′ is the Hamiltonian function in the new dynamical coordinates. For this
purpose it is sufficient to find any characteristic function f transforming the old into
the new coordinates; if it exists, it implies that the transformation is canonical. We
place:

H′ = H + ∂ f

∂t
, (4.143)

which, substituted in (4.142), gives:

∂Qk

∂t
= ∂

∂Pk
(H′ − H) = ∂2 f

∂Pk∂t
= ∂2 f

∂t∂Pk
,

(4.144)
∂Pk
∂t

=− ∂

∂Qk
(H′ − H) = − ∂2 f

∂Qk∂t
= − ∂2 f

∂t∂Qk
,

having admitted that the function f satisfies the Schwarz theorem on the inversion
of the differentiation order (see Sect. 4.2). Integrating with respect to time, it results:

Qk = ∂ f

∂Pk
+ bk,

(4.145)
Pk =− ∂ f

∂Qk
+ ak,

where ak and bk are arbitrary integration constants. Finally, placing:

F = f +
n∑

k=1

(−akQk + bk Pk), (4.146)

from (4.143) and (4.145) we obtain:
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∂F

∂t
= ∂ f

∂t
= H′ − H, (4.147a)

∂F

∂Qk
= ∂ f

∂Qk
− ak = −Pk

(k = 1, . . . , n), (4.147b)
∂F

∂Pk
= ∂ f

∂Pk
+ bk = Qk

which, compared with the relations in Table 4.3, prove that F is just the characteristic
function of a canonical transformation from the dynamical coordinates qk , pk to Qk ,
Pk .

In summary, a necessary and sufficient condition for a set of dynamical coordinates
to be canonical is that the relations (4.140) are satisfied. We could have anticipated
this result given the fact that the generalized coordinates qk and pk , with which we
have obtained the Hamilton equations (Sect. 4.4), were quite generic and nonetheless
they naturally satisfy the condition (4.140), as proved by (M.9).

The condition of canonicity via the Poisson brackets highlights a second feature
of canonical coordinates (obviously contained in the Hamilton equations). For each
value of the index k, one and only one generalized momentum conjugates with the
generalized coordinate Qk , the one with which the Poisson bracket equals unity.

Taking advantage of the relations (M.26) in the Poisson and Lagrange brackets,
it is easy to prove that the canonicity conditions imply:

[Qi , Qk] = 0, [Pi , Pk] = 0, [Pi , Qk] = δik, (4.148)

for any value of the indexes between 1 and n. We will limit to prove that the deter-
minant of matrix:

||B|| =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(P1, Q1) . . . (P1, Qn) (P1, P1) . . . (P1, Pn)
. . . . . . . . . . . . . . . . . .

(Pn, Q1) . . . (Pn, Qn) (Pn, P1) . . . (Pn, Pn)
(Q1, Q1) . . . (Q1, Qn) (Q1, P1) . . . (Q1, Pn)

. . . . . . . . . . . . . . . . . .

(Qn, Q1) . . . (Qn, Qn) (Qn, P1) . . . (Qn, Pn)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (4.149)

is |B| = (−1)n , leaving to the reader the elementary demonstration. In fact, owing
to (4.140), all the elements of the matrix (4.149) are null, except those of the main
diagonal. Therefore:

|B| =
n∏

k=1

(Pk, Qk)(Qk, Pk) =
n∏

k=1

[
− (Pk, Qk)

2
]

= (−1)n . (4.150)

Finally, we note that, placed f = H in (M.10), it is:
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∂H

∂pk
= (H, qk)

(k = 1, . . . , n), (4.151)
∂H

∂qk
=−(H, pk)

or, through (4.45a):

q̇k = (H, qk)
(k = 1, . . . , n). (4.152)

ṗk = (H, pk)

This form of the Hamilton equations is conserved in the canonical transformations.
In fact:

(H′, Qk) =
n∑

i=1

(Qi , Qk)
∂H′

∂Qi
+

n∑

i=1

(Pi , Qk)
∂H′

∂Pi
,

(4.153a)

(H′, Pk) =
n∑

i=1

(Qi , Pk)
∂H′

∂Qi
+

n∑

k=1

(Pi , Pk)
∂H′

∂Pi
,

from where, through the canonicity conditions (4.140):

(H′, Qk) = ∂H′

∂Pk
= Q̇k,

(H′, Pk) = − ∂H′

∂Qk
= Ṗk .

(4.153b)

4.8.4 The Canonical Invariants

To any mechanical system with n degrees of freedom we associate a hyperspace
at 2n dimensions, the so-called phase space, defined in such a way that each of its
coordinated axes represents one of the 2n dynamical coordinates qk , pk . In classical
mechanics, the state of the system is identified, at each moment, by a single point of
this space, and the evolution of the system itself is a continuous curve. This repre-
sentation invites us to demonstrate a theorem due to Poincaré: the n-tuple integral:

� =
∫

· · ·
∫ n∏

k=1

dqkdpk, (4.154)

extended to any volume of the phase space is invariant with respect to a canonical
transformation, namely:
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� =
∫

· · ·
∫ n∏

k=1

dqkdpk =
∫

· · ·
∫ n∏

k=1

dQkdPk . (4.155)

From mathematical analysis (transformation properties of the integration variables),
we know that:

� =
∫

· · ·
∫ n∏

k=1

dqkdpk =
∫

· · ·
∫

|J |
n∏

k=1

dQkdPk, (4.156)

where |J | is the modulus of the Jacobian determinant, i.e., the determinant of the
matrix:

‖J‖ =
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∣
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∣
∣
∣
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∣

∂Q1

∂q1
· · · ∂Q1

∂qn

∂Q1

∂p1
· · · ∂Q1

∂pn· · · · · · · · · · · · · · · · · ·
∂Qn

∂q1
· · · ∂Qn

∂qn

∂Qn

∂p1
· · · ∂Qn

∂pn

∂P1
∂q1

· · · ∂P1
∂qn

∂P1
∂p1

· · · ∂P1
∂pn· · · · · · · · · · · · · · · · · ·

∂Pn
∂q1

· · · ∂Pn
∂qn

∂Pn
∂p1

· · · ∂Pn
∂pn

∣
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. (4.157)

The proof of the theorem is therefore reduced to prove that the determinant of the
matrix ‖J‖ has a unitary modulus. To this end, through n exchanges of columns and
sign changes in the matrix (4.157), we construct the matrix:

‖J ′‖ =

∣
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∣
∣
∣
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∣
∣
∣
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∣
∣
∣
∣
∣
∣
∣

∂Q1

∂p1
· · · ∂Q1

∂pn
−∂Q1

∂q1
· · · −∂Q1

∂qn· · · · · · · · · · · · · · · · · ·
∂Qn

∂p1
· · · ∂Qn

∂pn
−∂Qn

∂q1
· · · −∂Qn

∂qn

∂P1
∂p1

· · · ∂P1
∂pn

−∂P1
∂q1

· · · −∂P1
∂qn· · · · · · · · · · · · · · · · · ·

∂Pn
∂p1

· · · ∂Pn
∂pn

−∂Pn
∂q1

· · · −∂Pn
∂qn
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. (4.158)

Since the previous manipulations do not alter the value of determinant, it is:

‖J‖ = ‖J ′‖. (4.159)

Multiplying the two matrices row by column, we obtain:
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‖D′‖ =
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(Q1, Q1) · · · (Q1, Qn) (Q1, P1) · · · (Q1, Pn)

· · · · · · · · · · · · · · · · · ·
(Qn, Q1) · · · (Qn, Qn) (Qn, P1) · · · (Qn, Pn)

(P1, Q1) · · · (P1, Qn) (P1, P1) · · · (P1, Pn)

· · · · · · · · · · · · · · · · · ·
(Pn, Q1) · · · (Pn, Qn) (Pn, P1) · · · (Pn, Pn)
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, (4.160)

which coincides with the matrix ‖D‖ given by (4.149) but for n exchanges between
the lines. Therefore:

|D′| = |D|, (4.161)

or, through (4.150):
|D′| = (−1)n(−1)n = 1. (4.162)

Finally, through (4.159):

|D′| = |J | × |J ′| = J 2 = 1, (4.163)

and then |J | = 1, which is what we wanted to prove.
A second class of canonical invariants is given by Poisson brackets. Let f (q, p, t)

and g(q, p, t) be any two functions of 2n dynamical coordinates qk and pk (k =
1, . . . , n), and f ′(Q, P, t), g′(Q, P, t) the functions obtained from them through a
canonical transformation in the new coordinates Qk and Pk . We show that:

( f, g) =
n∑

k=1

(
∂ f

∂pk

∂g

∂qk
− ∂ f

∂qk

∂g

∂pk

)

=

= ( f ′, g′) =
n∑

k=1

(
∂ f ′

∂Pk

∂g′

∂Qk
− ∂ f ′

∂Qk

∂g′

∂Pk

)

. (4.164)

By applying the relation (M.13) to the functions f and g thought as dependent on
Q and P , we have:

( f, g) =
n∑

i=1

n∑

k=1

[

(Qi , Qk)
∂ f ′

∂Qi

∂g′

∂Qk
+ (Qi , Pk)

∂ f ′

∂Qi

∂g′

∂Pk
+

+ (Pi , Qk)
∂ f ′

∂Pi

∂g′

∂Qk
+ (Pi , Pk)

∂ f ′

∂Pi

∂g′

∂Pk

]

. (4.165)

Since, by assumption, the transformation is canonical, it must satisfy the conditions
(4.140), and therefore the equality (4.165) simplifies in:
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( f, g) =
n∑

k=1

(
∂ f ′

∂Pk

∂g′

∂Qk
− ∂ f ′

∂Qk

∂g′

∂Pk

)

= ( f ′, g′), (4.166)

which is what we wanted to prove.

4.8.5 The Infinitesimal Canonical Transformations

Consider a canonical transformation defined by the characteristic function, of the
type of (4.120a):

F2(q, P) =
n∑

k=1

qk Pk . (4.167)

Using the relations of Table 4.3:

pk = ∂F2

∂qk
= Pk

(k = 1, . . . , n), (4.168a)

Qk = ∂F2

∂Pk
= qk

H′(Q, P, t) = H(q, p, t). (4.168b)

Therefore, the characteristic function (4.167) makes an identity transformation, that
is, a transformation leaving both the dynamical coordinates and the Hamiltonian
function unchanged.

Having said this, we consider a canonical infinitesimal transformation, able of
generating new dynamical coordinates differing from the old ones by infinitesimal
quantities:

Qk =qk + δqk
(k = 1, . . . , n). (4.169)

Pk = pk + δpk

The meaning of this transformation, also called contact transformation, must be
understood well. The infinitesimals δqk and δpk have no other meaning than a differ-
ence between the new and the old canonical dynamic coordinates; for example, they
have nothing to do with virtual displacements. So, if we neglect, as we will do later,
all the terms higher than the first in the infinitesimals δqk and δpk , it is predictable
that the characteristic function of the transformation given by (4.169) differs by an
infinitesimal amount from the characteristic function of an identity transformation.
We therefore put:

F2(q, P) =
n∑

k=1

qk Pk + ε G(q, P), (4.170)

where ε is an infinitesimal parameter. From the relations of Table 4.3 we then have:
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∂F2

∂qk
= pk = Pk + ε

∂G

∂qk
, (4.171)

or:

Pk − pk = δpk = −ε
∂G

∂qk
. (4.172)

Moreover:
∂F2

∂Pk
= Qk = qk + ε

∂G

∂Pk
. (4.173)

Since the second term of (4.173) is linear in ε and since Pk differs from pk by an
infinitesimal

(
cf. (4.169)

)
, the equality:

ε
∂G

∂Pk
= ε

∂G

∂pk
, (4.174)

is correct up to the first order, which is what we wanted to obtain. Therefore:

∂F2

∂Pk
= Qk = qk + ε

∂G

∂pk
, (4.175)

or:

Qk − qk = δqk = ε
∂G

∂pk
. (4.176)

Finally, it is evident that H′(Q, P, t) = H(q, p, t), since F2 does not depend on
time.

Although, strictly speaking, F2
(
the function (4.170)

)
should retain the role of

characteristic function of this transformation, it is however common practice to call
by this name also the function G that defines, through (4.172) and (4.176), the
infinitesimal variations δqk and δpk . This use is justified by the fact that the difference
between F2 and εG is the characteristic function of an identity transformation.

An interesting application of the previous results is obtained by placing:

ε = dt,
(4.177)

G = H.

Using the relations (4.172) and (4.176) and remembering the Hamilton equations
(4.45a), we have:

δqk = q̇k dt = dqk
(k = 1, . . . , n), (4.178)

δpk = ṗk dt = dpk

and thus, from (4.169):

Qk =qk + dqk
(k = 1, . . . , n), (4.179)

Pk = pk + dpk
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or:

Qk =qk (t + dt) = qk(t) + dqk
(k = 1, . . . , n). (4.180)

Pk = pk (t + dt) = pk(t) + dpk

These equations show that the characteristic function:

F2(q, P) =
n∑

k=1

qk Pk + Hdt, (4.181)

transforms the dynamical coordinates into new coordinates Qk and Pk representing
the values assumed by the old coordinates in consequence of an infinitesimal incre-
ment of time dt . In other words, the dynamical evolution of a mechanical system
in the infinitesimal interval of time dt can be described by an infinitesimal contact
transformation generated by the Hamiltonian function.

Now, since the result of two canonical transformations applied in succession is
equivalent to that of a single transformation, the values of the dynamical coordinates
qk(t) and pk(t) at any time t can be obtained from the initial ones, qk(t◦), pk(t◦),
through a canonical transformation that is a continuous function of time. Conversely,
there must be one canonical transformation able to reduce to the initial values, which
are obviously constant, those assumed by the dynamical coordinates at each time t .
The knowledge of such a transformation corresponds to the solution of the problem
of the motion of the system, as it implies that we have 2n functions:

qk = qk
(
t, q1(t◦), . . . , qn(t◦), p1(t◦), . . . , pn(t◦)

)
,

pk = pk
(
t, q1(t◦), . . . , qn(t◦), p1(t◦), . . . , pn(t◦)

)
,

which are precisely the sought solutions of the Hamilton equations. This last consid-
eration offers us the cue for important developments, which wewill meet in Sect. 4.9.

Through the study of the transformation operated by the characteristic function
(4.181) on any function f (q, p), we now examine the connections between Pois-
son brackets and infinitesimal transformations. It is appropriate to clarify here the
meaning of the term ‘transformation’. In general, a canonical transformation:

qk = qk(Q1, . . . , Qn, P1, . . . , Pn),
(4.182)

pk = pk(Q1, . . . , Qn, P1, . . . , Pn),

applied to the function f , simply modifies its functional dependence, i.e., its analyt-
ical form. On the other hand, since the (4.182) do not explicitly contain the time, the
transformation does not alter the numerical value of f .We put this concept in terms of
phase space. There the function f realizes a correspondence between a numerical set
(co-domain of the function) and the points of the phase space. This correspondence
is obviously independent of any one reference system transformation.
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The nature of the transformation defined by (4.181) is different. In this case, in
fact, the transformation is intended as a simple substitution of qk with Qk , and pk
with Pk , anywhere in the analytical expression of f . In other words, the functional
dependence remains the same for the function f , whether we use the old or the
new dynamical coordinates. In the phase space the transformation operates so as to
move the representative point in which the function is evaluated. In particular, if the
infinitesimal canonical transformation is generated by the Hamiltonian function, the
result of the replacement of the old variables with the new ones is to bring the value
the function f takes at the time t to that it will have at the time t + dt .

To summarize, by a generic infinitesimal canonical transformation with a Hamil-
tonian generator, it results:

δ f = f (Q, P) − f (q, p) = f (q + δq, p + δp) − f (q, p). (4.183)

With a Taylor development truncated at the first order in the infinitesimals δqk and
δpk , we obtain:

δ f =
n∑

k=1

(
∂ f

∂qk
δqk + ∂ f

∂pk
δpk

)

, (4.184)

or, from (4.172) and (4.176):

δ f = ε

n∑

k=1

(
∂ f

∂qk

∂G

∂pk
− ∂ f

∂pk

∂G

∂qk

)

, (4.185)

and, through the Poisson brackets:

δ f = ε (G, f ). (4.186)

Consequently, the change of the Hamiltonian function due to an infinitesimal canon-
ical transformation is given by:

δH = ε (G,H). (4.187)

If the generating function is the Hamiltonian itself, then:

δH = ε (H,H) = 0. (4.188)

Again, if the generating function is a constant of motion a, which does not explicitly
contain the time (∂a/∂t = 0), in consequence of (4.61) it is:

δH = ε (a,H) = 0. (4.189)

Thus, the constants of motion that do not explicitly depend on time are functions
generating infinitesimal canonical transformations which do not modify the Hamil-
tonian. Taking advantage of this property it is possible to identify some constants of
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motion directly when the Hamiltonian function presents special symmetries. This is
compliant and generalizes the considerations exposed in Sect. 3.1.1.

We quote in the end the famous theorem of Liouville,18 fundamental in the study
of systemswithmany bodies. Letψ(q, p, t) be the spatial distribution function in the
phase space; it expresses the number density ν of system particles per unit volume
of phase space, i.e.:

dν = ψ(q, p, t) d�, (4.190)

where d� =
n∏

k=1

dqkdpk , is a volume element. The Liouville theorem states that:

dψ

dt
= 0. (4.191)

For a complete discussion and for applications to the dynamics of stellar systems see
[7].

4.8.6 Canonical Systems of Constants of Motion

We now demonstrate that the constants of motion for a Hamiltonian function
H(q, p, t) of a mechanical system with n degrees of freedom can always be cho-
sen so as to satisfy the conditions of canonicity (4.140). For this purpose, we first
illustrate the procedure by which, given any function α1(q, p) depending on 2n
dynamical coordinates qk and pk , it can be associated to n − 1 functions αi (q, p)
and n functions β j (q, p) in such a way that the following conditions are satisfied:

(αi , α j ) = (βi , β j ) = 0, (βi , α j ) = δi j . (4.192)

Let β1(q, p) be any one of the 2n independent solutions of the linear partial differ-
ential equation:

(β1, α1) = 1, (4.193)

in the independent variables qk and pk . Consider the linear homogeneous partial
differential equation:

(b, α1) = 0. (4.194)

It has 2n − 1 independent solutions; α1 is one of them. We indicate the remaining
2n − 2 by bi (q, p), with i = 1, 2,…,2n. In conclusion, any function of α1 and of the
2n − 2 functions bi , is also a solution of the (4.194). Moreover, from the property
(M.3) we obtain:

18 Joseph Liouville (1809–1882): French mathematician and politician, founder of the Journal de
Mathématiques Pures et Appliquées, also known as being the first to promote the unpublished work
of Évarist Galois (1811–1832).



172 4 Analytical Mechanics

(
b, (α1, β1)

) + (
α1, (β1, b)

) + (
β1, (b, α1)

) =
= (

α1, (β1, b)
) + (

β1, (b, α1)
) = 0, (4.195)

where we have used the (4.193). If the function b is a solution of the (4.194), the
previous relation reduces to: (

α1, (β1, b)
) = 0, (4.196)

showing that the function (β1, b) is also a solution of (4.194). So, even (β1, b), as
any other integral of (4.194), depends on α1, b1, . . . , b2n−2 only, that is:

(β1, b) = fi (α1, b1, . . . , b2n−2). (4.197)

This allows us to prove that the 2n − 2 non-trivial solutions of the linear homoge-
neous partial differential equation:

(β1, c) = 0, (4.198)

are functions of α1, b1, . . . , b2n−2 only. In other words, they do not depend on β1.
Indeed, by expanding the Poisson bracket at first member of (4.198) in the hypothesis
that c also depends 19 on β1, we have:

(β1, c) = (β1, α1)
∂c

∂α1
+ (β1, β1)

∂c

∂β1
+

2n−2∑

j=1

(β1, b j )
∂c

∂b j
= 0, (4.199)

or, through (4.193):

(β1, c) = ∂c

∂α1
+

2n−2∑

j=1

(β1, b j )
∂c

∂b j
= 0. (4.200)

Recalling that the functional dependence given by (4.197) holds for the coefficients
of ∂c/∂bi , the second term of (4.200) can be thought of as independent of β1. That
said, we denote by ci (i = 1, 2, . . . , 2n) the independent solutions of (4.200). Since
they are functions of α1, b1, . . . , b2n−2, it results:

(ci , α1) = (α1, α1)
∂ci
∂α1

+
2n−2∑

j=1

(b j , α1)
∂ci
∂b j

, (4.201)

or, through (4.192) and (4.194):

19 Note that α1, β1, b1, . . . , b2n−2 are 2n independent functions of the dynamical coordinates qk ,
pk . Therefore, they can always be thought of as independent variables, replacing the dynamical
coordinates.
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(ci , α1) = 0 (i = 1, . . . , 2n − 2). (4.202)

Wenowprove that the 2n − 2 functions ci share the property that, for any combination
of the indexes, the bracket (ci , c j ) depends on the functions c only. Since α1, β1,
c1, . . . , c2n−2, are 2n independent functions, they can always serve to represent, as
independent variables, any function of the dynamical coordinates, including therefore
(ci , c j ). In order to demonstrate the property enunciated above, it is enough to prove
that (ci , c j ) does not depend on either α1 or β1. To this end we develop the Poisson
bracket

(
β1, (ci , c j )

)
. It is:

(
β1, (ci , c j )

) = (β1, α1)
∂(ci , c j )

∂α1
+(β1, β1)

∂(ci , c j )

∂β1
+

+
2n−2∑

k=1

(β1, ck)
∂(ci , c j )

∂ck
= 0, (4.203)

from which, through (4.192), (4.193) and (4.198), we obtain the expression:

(
β1, (ci , c j )

) = ∂(ci , c j )

∂α1
= 0, (4.204)

proving that (ci , c j ) is independent of α1. In a similar way we demonstrate the
independence from β1 starting with the relation:

(
α1, (ci , c j )

) = 0. (4.205)

In conclusion, (ci , c j ) is a function of c1, c2, . . . , c2n−2 only. For this property we
say that the functions c form a group.

We now illustrate the strategy for obtaining, starting from α1, the 2n − 1 functions
of the dynamical coordinates that satisfy the conditions (4.140). We choose, quite
arbitrarily, any of the c functions, for example c1, and call it α2. Based on (4.198)
and (4.202), we have:

(α1, α2) = 0, (4.206a)

(β1, α2) = 0; (4.206b)

in other words, the function α2 satisfies the canonicity conditions (4.140) relatively
to α1 and β1. We must now associate it with a function β2 that is ‘orthogonal’ to α1

and β1. Let β2(α2, c2, . . . , c2n−2) be any one of the 2n − 2 solutions of the linear
partial differential equation:

(β2, α2) =
2n−2∑

i=1

(ci , α2)
∂β2

∂ci
= 1, (4.207)
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in the 2n − 2 independent variables c1, c2, . . . , c2n−2,with c1 = α2. Sinceβ2 depends
on the functions ci , (4.200) and (4.202) are satisfied. In other terms, it is:

(β1, β2) = (β2, α1) = 0, (4.208)

in agreement with the conditions (4.192). We indicate with b′
1, b

′
2, . . . , b

′
2n−4, the

2n − 4 functions that, besides α2, are solutions of the linear homogeneous partial
differential equation:

(b′, α2) =
2n−2∑

i=1

(ci , α2)
∂b′

∂ci
= 0, (4.209)

in the independent variables α2, c2, . . . , c2n−2. By the same arguments we used to
show that (β1, bi ) does not depend on β1 (see pag. 134), it is easy to prove that the
functions (β2, bi ) do not depend on β2. Thus, in analogy with (4.197), we set:

(β2, b
′
i ) = f ′

i (α2, b
′
1, . . . , b

′
2n−4). (4.210)

Looking back at the path outlined above, let us consider the linear homogeneous
partial differential equation:

(β2, c
′) = ∂c′

∂α2
+

2n−4∑

i=1

(β2, b
′
i )

∂c′

∂b′
i

= 0. (4.211)

Since, as the (4.211) shows, the coefficients of ∂c′/∂b′
i do not depend on β2, the

2n − 4 solutions c′
1, c

′
2, . . . , c

′
2n−4, are only functions of α2, b′

1, . . . , b
′
2n−4, that is:

c′
i = c′

i (α2, b
′
1, . . . , b

′
2n−4). (4.212)

As before, it is possible to show that the 2n − 4 functions c′
i form a group, in the

sense that the functions (c′
i , c

′
j ) do not depend on α1, α2, β1 and β2, but only on the

c functions themselves. We leave the reader this verification and, quite arbitrarily,
place c′

1 = α3. By means of the (4.206a), it results:

(α2, α3) = (α2, c
′
1) =

2n−4∑

i=1

(α2, b
′
i )

∂c′
1

∂b′
i

= 0. (4.213)

From (4.211) we have:
(β2, α3) = 0. (4.214)

Finally, since the functions b′
i depend only on the 2n − 2 functions ci , from the

(4.200) and (4.202) we obtain:

(β1, α3) = (α3, α1) = 0. (4.215)
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Fig. 4.2 Scheme of the
iterative cycles to find a set
of 2n canonically conjugated
functions, αi and βi , starting
from a function α1 of the 2n
dynamical variables qk , pk

We interrupt here the iterative process that we have followed for two successive
cycles. It is clear that n cycles will be required to complete it, because the order of
the differential equation defining βi (originally of order 2n) is lowered by 2 at each
cycle. The overall strategy is now clear. At each subsequent cycle, we look for two
functions, βi and αi+1 that are orthogonal to all the previous ones, except for αi (see
Fig. 4.1).

We now return to the problem formulated at the beginning of this section. Given
the Hamiltonian function H(q, p, t) of 2n dynamical coordinates, we define a new
function (Fig. 4.2):

H′(q, p) = H(q, p, t) + pn+1, (4.216)

where pn+1 is an independent variable that we arbitrarily conjugate to time
by placing: qn+1 = t . The function H′ will thus depend on 2n + 2 coordinates
q1, q2, . . . , qn, qn+1 = t, p1, p2, . . . , pn, pn+1 only. Starting from this function, we
apply the procedure described in the first part of this section to find the 2n + 1 func-
tions α2, . . . , αn+1, β1, β2, . . . , βn+1, that are canonically associated to α1 = H′, so
to satisfy the conditions (4.192). The (4.193) becomes:

(β1,H
′)� = 1, (4.217)

or, through (4.216):
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(β1,H
′)� =

n+1∑

i=1

(
∂β1

∂pi

∂H′

∂qi
− ∂β1

∂qi

∂H′

∂pi

)

=

=
n∑

i=1

(
∂β1

∂pi

∂H

∂qi
− ∂β1

∂qi

∂H

∂pi

)

− ∂β1

∂t
+ ∂β1

∂pn+1

∂H

∂t
= 1, (4.218)

where the subscript � attached to the Poisson bracket remarks that it must be referred
to 2n + 2 variables, including qn+1 and pn+1. Remember that we are interested in
any one solution of this equation, which is readily found:

β1 = −t = −qn+1, (4.219)

as we can verify by replacing it in (4.218). This done, consider the equation:

(b,H′)� = 0, (4.220)

equivalent to (4.194). By developing the Poisson bracket through the (4.216), we
obtain:

(b,H′)� = (b,H) + (b, pn+1)� = (b,H) − ∂b

∂t
. (4.221)

Finally, if ∂b/∂pn+1 = 0, the previous equation gives:

(b,H′)� = (b,H) − ∂b

∂t
= 0. (4.222)

This linear homogeneous partial differential equation in the variables q1, . . . , qn ,
p1, . . . , pn , and t , admits 2n independent solutions. The comparison with (4.61)
shows that they coincidewith the 2n constants ofmotion,ai (q, p, t) = const, relative
to the Hamiltonian H. Therefore, each solution b of the (4.220) must be a function
of the constants of motion ai , and therefore it must itself be a constant of motion.
But, for the function H′ = α1, the canonicity conditions (4.192) are reduced to:

(αi ,H
′)� =0 (i = 1, . . . , n+1),

(4.223)
(β j ,H

′)� =0 ( j = 2, . . . , n+1),

that is, to the conditions (4.222). In particular, the 2n canonically associated functions
α2, . . . , αn+1, β2, . . . , βn+1, depend on the 2n constants of motion ai relative to H,
and therefore they are themselves constants of motion. This proves that it is always
possible to construct constants of motion canonically conjugated.

Before moving on to a practical application of this property, we observe that, if
H′ is still a Hamiltonian function in canonical form, from the Hamilton equations
(4.45a) and from (4.216) we have:
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dqn+1

dt
= ∂H′

∂pn+1
= ∂(H + pn+1)

∂pn+1
= 1,

(4.224)dpn+1

dt
=− ∂H′

∂qn+1
= − ∂H

∂qn+1
.

The first gives: qn+1 = t , which is consistent with our assumptions. Consequently,
the second equation becomes:

dpn+1

dt
= −∂H

∂t
= −dH

dt
, (4.225)

where we have used the relation (4.46). By integrating, we have:

pn+1 = −H. (4.226)

This shows that the Hamiltonian H is canonically conjugated to time t . Moreover,
substituting in (4.216) the expression of pn+1 given by (4.226), we have:

H′ = H + pn+1 = H − H = 0. (4.227)

We will resume this result at Sect. 4.9, where we deal with the Jacobi equation.

4.8.7 A System of Canonical Elements for the Elliptical Orbit

We will now use the results of previous section to obtain a system of 6 canonical
elements replacing the classic elements of the elliptical orbit, a, e, δ◦ = −nt◦, �, ω,
and i . The relations (4.79a) show that the semi-major axis length, a, forms a null
Poisson bracket with any other element except δ◦ (cf. Table4.2):

(a, δ◦) = − 2

n a
. (4.228)

Following the scheme traced in Sect. 4.8.6, it is convenient to identify α1 with any
function of a. With all the arbitrariness that is allowed, we place20

α1 = E = −G
m1 + m2

2 a
, (4.229)

observing that, according to (2.68), it coincides with the total specific energy. Thus:

(δ◦, α1) = (δ◦, a)
∂α1

∂a
=

√
G (m1 + m2)

a3
= n, (4.230)

20 Note that here the total energy, E, is given per unit mass of μ, at variance with formula (2.67) in
Chap. 2.
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where we have used the (M.10) and the expression of (δ◦, a) from Table 4.2, with
the the mean motion given by (2.83). The equality (4.230) suggests us to choose:

β1 = δ◦

√
a3

G (m1 + m2)
= δ◦

n
= −t◦, (4.231)

since in this way:

(β1, α1) =
(

− t◦,−G
m1 + m2

2a

)
= 1. (4.232)

Let us now consider the equation equivalent to (4.194):

(b, α1) = (b, a)
∂α1

∂a
= 0. (4.233)

It admits 2n − 2 = 4 independent solutions21 in addition to the semi-major axis
length itself. Recalling that (Sect. 4.7):

(e, a) = (�, a) = (ω, a) = (i, a) = 0, (4.234)

we can set: b1 = e, b2 = �, b3 = ω, and b4 = i . Thus, the solutions of the equation:

(β1, c) = (−t◦, c) = (
δ◦
n

, c) = 0, (4.235)

equivalent to (4.202), are functions of α1 = −G (m1 + m2)

2a
, and of b1 = e, b2 = �,

b3 = ω, and b4 = i only, that is:

(β1, c) = (β1, α1)
∂c

∂α1
+ (β1, e)

∂c

∂e
+ (β1,�)

∂c

∂�
+

+(β1, ω)
∂c

∂ω
+ (β1, i)

∂c

∂i
= 0. (4.236)

Using the (4.231) and the relations of Table4.2, the coefficients of the previous
equation become:

21 Recall that the two-body problem has only 3 degrees of freedom as it reduces to the motion of a
single point of mass μ subjected to a central force with pole at the second body.
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(β1, α1) = 1,

(β1, e) = 1

n
(δ◦, e) = 1 − e2

n2a2e
,

(β1,�) = 0, (4.237)

(β1, ω) = 0,

(β1, i) = 0,

with which the (4.236) becomes:

(β1, c) = ∂c

∂α1
+ 1 − e2

n2a2e

∂c

∂e
= 0, (4.238)

in the independent variables α1, e,�, ω, and i . As it is easy to prove by direct
substitution, 2n − 2 = 4 possible independent solutions are:

c1 =
√
G(m1 + m2) a (1 − e2),

c2 =√
G (m1 + m2) a cos i, (4.239)

c3 =�,

c4 =ω.

With all the allowed arbitrariness, we define:

α2 = c1 =
√
G (m1 + m2) a (1 − e2). (4.240)

Recalling the (2.65), the previous function can be written as:

α2 = √
G (m1 + m2) p = h, (4.241)

which thus coincides with the total angular momentum. We now find one solution
of the equation:

(β2, α2) = 1. (4.242)

Since β2 = β2(α2, c2, c3, c4), then:

(β2, α2) = (α2, α2)
∂β2

∂α2
+

4∑

i=2

(ci , α2)
∂β2

∂ci
= 1. (4.243)

The coefficients can be made explicit using the relations (4.239) and those in
Table4.2. It results:
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(α2, α2) = 0,

(c2, α2) = (i, α2)
∂c2
∂i

= (i, a)
∂c2
∂i

∂α2

∂a
+ (i, e)

∂c2
∂i

∂α2

∂e
= 0,

(c3, α2) = (Ω, α2) = (Ω, a)
∂α2

∂a
+ (Ω, e)

∂α2

∂e
= 0,

(c4, α2) = (ω, α2) = (ω, a)
∂α2

∂a
+ (ω, e)

∂α2

∂e
= (ω, e)

∂α2

∂e
=

= −
√

1 − e2

n a2e

∂

∂e
G (m1 + m2) a (1 − e2) = 1.

(4.244)

Thus, the (4.242) becomes simply:

(β2, α2) = ∂β2

∂c4
= ∂β2

∂ω
= 1, (4.245)

of which:
β2 = ω = π − �, (4.246)

is an obvious solution.
We now look for the 2n − 4 = 2 independent functions that, in addition to α2, are

solutions of the equation:
(b′, α2) = 0. (4.247)

The relations (4.244) show that they are:

b′
1 =c2 = √

G (m1 + m2) a cos i,
(4.248)

b′
2 = c3 = �.

Therefore, the two solutions of the equation:

(β2, c
′) = 0, (4.249)

will be functions of α2, b′
1, and b′

2 only. Consequently:

(β2, c
′) = (β2, α2)

∂c′

∂α2
+ (β2, b

′
1)

∂c′

∂b′
1

+ (β2, b
′
2)

∂c′

∂b′
2

= 0. (4.250)

But:

(β2, α2)=1,

(β2, b
′
1)= (ω, b′

1) = (ω, a)
∂b′

1

∂a
+ (ω, i)

∂b′
1

∂i
= cos i√

1 − e2
= − b′

1

α2
, (4.251)

(β2, b
′
2)= (ω,�) = 0,



4.8 Canonical Transformations 181

and thus (4.249) reduces to:

(β2, c
′) = ∂c′

∂α2
+ b′

1

α2

∂c′

∂b′
1

= 0, (4.252)

which, of course, admits b′
1 and b′

2 as independent solutions. Therefore:

c′
1 =b′

2 = �,
(4.253)

c′
2 =b′

1 = √
G (m1 + m2) a cos i.

Having placed arbitrarily:
α3 = c′

1 = �, (4.254)

as a last step we look for the solution of the equation:

(β3, α3) = (β3,�) = 1. (4.255)

It will be a function of α3 and c′
2 only, so:

(β3, α3) = (α3, α3)
∂β3

∂α3
+ (c′

2, α3)
∂β3

∂c′
2

= 1, (4.256)

or:

(β3, α3) = (c′
2, α3)

∂β3

∂c′
2

= (a,�)
∂c′

2

∂a

∂β3

∂c′
2

+ (i,�)
∂c′

2

∂i

∂β3

∂c′
2

=

= (i,�)
∂c′

2

∂i

∂β3

∂c′
2

= 1√
1 − e2

∂β3

∂c′
2

= 1. (4.257)

The sought solution is therefore:

β3 = c′
2

√
1 − e2 =

√
G (m1 + m2) a (1 − e2) cos i, (4.258)

or, with the (2.65):
β3 = h cos i, (4.259)

which coincides with the component of the angular momentum in the direction of
the polar axis.

In conclusion, we have found a canonical system whose relation to the original
orbital elements is summarized by the matrix:
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α1 = −G
m1 + m2

2 a
β1 = −t◦

α2 = h β2 = ω = π − �

α3 = � β3 = h cos i

. (4.260)

The introduction of these elements allows us to exploit the canonicity properties
(4.192). It is clear that, due to the arbitrariness of some of the choices made in the
the iterative procedure just followed, the system of canonical constants (4.260) is not
the only one possible for the elliptical orbit, but just one of the simplest.

4.9 The Equation of Jacobi

The idea behind the Jacobi equation is contained in the considerations made at the
end of Sect. 4.8.6. LetH(q, p, t) be theHamiltonian function of amechanical system
with n degrees of freedom. If the functions:

Qi =Qi (q, p, t)
(i = 1, . . . , n), (4.261)

Pi = Pi (q, p, t)

are independent, they constitute a system of equations for a possible transformation
of dynamic coordinates. We impose that this transformation is canonical and, in
addition, we require that it makes the Hamiltonian H′(Q, P, t) identically null in
the new dynamic coordinates. Before verifying whether such a transformation exists
and, if so, what conditions the generating function must satisfy, we want to examine
the consequences of having:

H′(Q, P, t) ≡ 0. (4.262)

If the coordinates Q and P are canonical, the Hamilton equations assume the form:

Q̇i = ∂

∂Pi
H′(Q, P, t) = 0

(i = 1, . . . , n), (4.263)
Ṗi =− ∂

∂Qi
H′(Q, P, t) = 0

or:

Qi =αi = const
(i = 1, . . . , n). (4.264)

Pi =βi = const

This result identifies the 2n functions of the system (4.261), which are independent by
hypothesis, with an equal number of constant functions of the dynamical coordinates
q and p, and possibly of time t . In other words, the functions:
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αi =αi (q, p, t)
(i = 1, . . . , n), (4.265)

βi =βi (q, p, t)

constitute a system of 2n independent first integrals of the Hamiltonian equations.
According to the arguments of Sect. 4.5, this is sufficient to state that the system
(4.265) solves completely the mechanical problem proposed by H. It should be
emphasized once again that the existence of a transformation capable of nullifying
identically the Hamilton H′ is not sufficient for our purpose. We require the trans-
formation to be canonical so that the form of the Hamilton equations is conserved.
Only in this case, in fact, the condition: H′ ≡ 0, necessarily implies the constancy
of Q and P .

So, let F(q, Q, t) be the generating function of a canonical transformation
between the old coordinates, qk , pk (k = 1, . . . , n), and the new ones, Qk , Pk . The
results of Sect. 4.8.5, summarized in Table 4.3, show that the function F establishes
the following relations:

pk = ∂

∂qk
F(q, Q, t)

Pk = − ∂

∂Qk
F(q, Q, t)

(k = 1, . . . , n), (4.266a)

H′(Q, P, t) = H(q, p, t) + ∂

∂t
F(q, Q, t). (4.266b)

The system of n independent equations (4.266a) can be solved with respect to the
unknowns Qi (i = 1, . . . , n). We obtain functions of the type (4.261) which define
the new coordinates Qi using the old dynamical coordinates. Similarly, the set of n
functions (4.266a) defines the new moments Pi (i = 1, . . . , n) using the coordinates
q and Q. Since the latter are functions of q and p, the n functions (4.266a) are
equivalent to the functions Pi of (4.261). With that, the canonical transformation is
perfectly identified. We are left with the relation (4.266b), which allows us to find
the expression of the Hamiltonian function in the new coordinates. Suppose now that
the characteristic function is such thatH′ ≡ 0. We will call it the principal Hamilton
function and, following the literature, indicate it with the symbol S. Let then be:

F(q, Q, t) = S(q, α, t), (4.267)

where we used the condition Qi = αi which follows from being H′ ≡ 0. Since the
new moments are constant, the relations (4.266a) become:

pk = ∂

∂qk
S(q, α, t)

(k = 1, . . . , n). (4.268)
βk =− ∂

∂αk
S(q, α, t)
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Furthermore, the principal Hamilton function must be solution of the homogeneous
first order partial differential equation in the n + 1 variables q1, q2, . . . , qn, and t :

∂

∂t
S(q, α, t) + H(q,

∂S

∂qk
, t) = 0, (4.269)

which is obtained from (4.266b) by settingH′ ≡ 0, and replacing pk with the expres-
sion given by (4.268). In conclusion, (4.269), named after Jacobi, defines the canon-
ical transformation which nullifies the Hamiltonian identically and, consequently,
transforms the old dynamic coordinates into an equal number of canonically conju-
gated constants of motion. From the mathematical point of view we note that, in the
case where the homogeneous equation (4.269) provides a solution, this must contain
n independent constants α1, α2, . . . , αn . We place then:

Qk = αk (k = 1, . . . , n), (4.270)

with which we obtain n independent constant coordinates. The corresponding con-
jugate moments result from the application of the relation (4.268).

Since the Jacobi equation is a linear differential equation in n + 1 variables, at
a first look it might appear that the procedure now described halves the number
of integrations needed to solve the mechanical problem. In reality, together with
the equation (4.269) that possibly allows us to differentiate the main function of
Hamilton, and so the constant coordinates αi , we have to consider the n first order
differential equations (4.268) which define the constants of motion βi conjugated to
αi , with which the numbers check out.

In order to show what the meaning of the Hamilton function is, we calculate the
total derivative of S(q, α, t) with respect to time:

dS

dt
=

n∑

k=1

∂S

∂qk
q̇k + ∂S

∂t
, (4.271)

or, through (4.268), (4.269) and (4.43):

dS

dt
=

n∑

k=1

pkq̇k − H = L(q, q̇, t), (4.272)

which, once integrated, provides:

S(q, α, t) =
∫ t

t◦
L(q, q̇, t ′)dt ′. (4.273)

Unfortunately, this expression does not help us calculate S since, in order to integrate
the Lagrangian function, we should know the functions qk(t); in other words, we
should have already solved the problem of motion.
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We have seen that, as it was to be expected, the formalism of Jacobi does not
decrease the number of integrations necessary to solve the mechanical problem.
Indeed we will see in the example at Sect. 4.12.1, that this formalism does not even
simplify the calculations, and often complicates them. In fact, the power of the
Hamilton-Jacobi formalism is not in a trivial, although useful reduction of the com-
plexity of the calculations.

4.10 Special Cases of the Jacobi Equation

We now consider two particular cases of the Jacobi equation (4.269). The first one is
refers to those problems in which the total mechanical energy is conserved. The sec-
ond provides an effectivemethod of calculus applicable to Hamiltonians of particular
form.

4.10.1 When the Hamiltonian does not Depend on Time

If the Hamiltonian functionH is independent of time, from the equality (4.46) it is:

∂H

∂t
= dH

dt
= 0, (4.274)

or:
H(q, p) = −α1 = const, (4.275)

where the choice of the constant is arbitrary. In this case the Jacobi equation becomes:

∂

∂t
S(q, α, t) − α1 = 0, (4.276)

and therefore time can be separated by writing the solution of (4.276) as:

S(q, α, t) = W (q, α) + α1t, (4.277)

where, as usual, the functions αi are integration constants. The auxiliary function
W (q, α), called characteristic Hamilton function, does not explicitly contain time.
It does not appear in the Jacobi equation (which is identically satisfied), but only in
equations (4.268) and (4.269), which become:
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pk = ∂S

∂qk
= ∂W

∂qk
,

βk = − ∂S

∂αk
=

⎧
⎪⎨

⎪⎩

−∂W

∂α1
− t for k = 1,

−∂W

∂αk
for k �= 1.

(4.278)

These relations show that the function W is itself characteristic of a canonical trans-
formation from the old coordinates, qk and pk , to new ones, Qk and Pk , given by:

Qk =
{

α1 = −H(q, p) for k = 1,

αk for k �= 1,
(4.279)

and, from (4.118):

Pk =
⎧
⎨

⎩

− ∂W

∂Q1
= −∂W

∂α1
= t + β1 for k = 1,

βk for k �= 1.
(4.280)

Finally, sinceW does not depend on time, the new HamiltonianH′(Q, P) coincides
with the old one:

H′(Q, P) = H(q, p) = −α1, (4.281)

or, through the (4.279) and (4.280):

H′(α1, . . . , αn, β1 + t, β2, . . . , βn) = −α1. (4.282)

In summary, if the Hamiltonian is independent of time, it is possible to operate a
canonical transformation generated by the characteristic Hamiltonian function in
dynamical coordinates given by (4.279) and (4.280).

4.10.2 Separation of Variables

As any other partial differential equation, the Jacobi equation is usually rather dif-
ficult to solve (if the solution exists). It becomes a practical tool when there are the
conditions to apply the variable separation technique. In this case, in fact, the search
for the solution can always be traced back to a quadrature.

Suppose that one of the variables, say q1, appears in the Jacobi equation (4.269)
only in a certain combination h1(q1, ∂S/∂q1), not containing any other coordinate,
including time t . In other words, let us assume that the Jacobi equation:

∂S

∂t
+ H

(

qi ,
∂S

∂qi
, t

)

= 0, (4.283)
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is in the form in which:
∂S

∂t
= s(q2, . . . , qn, t), (4.284)

and, furthermore, that:

H = H

(

q2, . . . , qn,
∂S

∂q2
, . . . ,

∂S

∂qn
, t, h1

(
q1,

∂S

∂q1

))

. (4.285)

We search for a solution in the form:

S(q, t) = S′(q2, . . . , qn, t) + S1(q1). (4.286)

Substituting in (4.283), we obtain the equation:

∂

∂t
S′(q2, . . . , qn, t) +

+ H

(

q2, . . . , qn,
∂S′

∂q2
, . . . ,

∂S′

∂qn
, t, h1

(
q1,

dS1(q1)

dq1

))

= 0; (4.287)

it shows that necessarily:

h1

(

q1,
dS1(q1)

dq1

)

= α1 = const. (4.288)

In fact, since the n variables qi are independent, it is possible to vary q1 keeping all
the others constant; but, if this operation were able to change the value of h1, the
equation (4.287) would no longer be satisfied.

By replacing the function h1 in (4.287) with the constant solution α1, we have:

∂

∂t
S′(q2, . . . , qn, t) + H

(

q2, . . . , qn,
∂S′

∂q2
, . . . ,

∂S′

∂qn
, α1, t

)

= 0. (4.289)

With this procedure, the first order partial differential equation (4.283) in the n
variables qi and the time t , is reduced to the two equations (4.288) and (4.289). The
first of them is an ordinary first order differential equation; it provides the function
S1(q1) by a quadrature. The second is a partial differential equation of the same type
as (4.283), but containing one less of the independent variables.

The procedure can be iterated if a second variable in the equation (4.289), say q2,
appears only in a certain combinationh2(q2, ∂S′/∂q2), containingneither coordinates
nor time. If we then place:

S(q, t) = S′′(q3, . . . , qn, t) + S1(q1) + S2(q2), (4.290)

we obtain the new equations:
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h2

(

q2,
dS2(q2)

dq2

)

= α2 = const, (4.291a)

∂

∂t
S′′(q3, . . . , qn, t) + H

(

q3, . . . , qn,
∂S′′

∂q3
, . . . ,

∂S′′

∂qn
, α1, α2, t

)

= 0. (4.291b)

If all the n coordinates qi and the time t can be separated, then the Jacobi equation
is reduced entirely to quadratures, and its solution is of the type:

S(q1, . . . , qn, t) =
n∑

k=1

Sk(qk) + Sn+1(t), (4.292)

where the functions Sk are solutions of the ordinary differential equations:

hk

(

qk,
dSk(qk)

dqk

)

= αk = const, (4.293)

d

dt
Sn+1(t) + H(α1, . . . , αn, t) = 0. (4.294)

In particular, if the Hamiltonian is independent of time, condition (4.275) holds, and
therefore the equation (4.294) reduces to:

d

dt
Sn+1(t) − α1 = 0, (4.295)

which is readily integrated in:

Sn+1(t) = α1t + γ1. (4.296)

In conclusion, we explicitly note that the conditions required for the application of
the variable separation method are closely connected with the chosen coordinate
system. This fact will be apparent in the example presented in the next section.

4.11 The Method of Hamilton-Jacobi Applied to the
Two-Body Problem

As an instructive exercise, we take up here the two-body problem, already formulated
and solved in Chap. 2, addressing it with the Hamilton-Jacobi technique. We adopt
a Cartesian orthogonal reference system with axes of any orientation but the origin
in one of the two massive points, say P1. Let then be:
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q ′
1 = x,

q ′
2 = y, (4.297)

q ′
3 = z,

the coordinates of the othermassive body P2. The corresponding conjugatedmoments
are those that we already calculated in Sect. 4.7:

p′
1 = ẋ = q̇ ′

1,

p′
2 = ẏ = q̇ ′

2, (4.298)

p′
3 = ż = q̇ ′

3.

Since the system is conservative, we obtain right away the Hamilton function from
the expression of total specific energy (2.8):

H(q ′, p′) = 1

2
(p′

1
2 + p′

2
2 + p′

3
2
) − G

m1 + m2
√
q ′
1
2 + q ′

2
2 + q ′

3
2

= −α1. (4.299)

The corresponding Jacobi equation uses of the Hamilton characteristic function
(4.277), asH does not explicitly contains time. Replacing the moments p′

k appearing
in (4.299) with the expressions:

p′
k = ∂

∂q ′
k

W (q ′
1, q

′
2, q

′
3, α1, α2, α3) (k = 1, . . . , n), (4.300)

equivalent to (4.117), we obtain the equation:

H(p′, q ′) = 1

2

[(
∂W

∂q ′
1

)2
+

(
∂W

∂q ′
2

)2
+

(
∂W

∂q ′
3

)2
]

+

− G
m1 + m2

√
q ′
1
2 + q ′

2
2 + q ′

3
2

= −α1, (4.301)

where the variable separation technique cannot be applied due to the presence of the

term: r =
√
q ′
1
2 + q ′

2
2 + q ′

3
2. Because of that, it is worth reconsidering the choice

of the coordinate system, looking for one in which r appears as an independent
coordinate. The most obvious choice is the spherical system.
We will then place:

q1 = r,

q2 = θ, (4.302)

q3 = φ.
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Fig. 4.3 Link between
Cartesian and spherical
coordinates

Since (cf. Fig. 4.3):

x = r cosφ sin θ,

y = r sin φ sin θ, (4.303)

z = r cos θ,

by differentiating and summing up the squares, after obvious simplifications, we
obtain:

ẋ2 + ẏ2 + ż2 = ṙ2 + r2 θ̇2 + r2 sin2θ φ̇2, (4.304)

or, through (4.302):

ẋ2 + ẏ2 + ż2 = q̇2
1 + q2

1 q̇
2
2 + q2

1 sin2q2 q̇
2
3 . (4.305)

The Lagrangian function of the system becomes then:

L(q, q̇) = 1

2
(ẋ2 + ẏ2 + ż2) + G

m1 + m2

(x2 + y2 + z2)1/2
=

= 1

2
(q̇2

1 + q2
1 q̇

2
2 + q2

1 sin2q2 q̇
2
3 )+ G

m1 + m2

q1
. (4.306)

Through the (4.37), the latter allows to obtain the conjugated moments:
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p1 = ∂L

∂ q̇1
= q̇1,

p2 = ∂L

∂q̇2
= q2

1 q̇2, (4.307)

p3 = ∂L

∂ q̇3
= q2

1 sin2q2 q̇3,

with which we built the Hamiltonian function:

H(p, q) =
3∑

k=1

pkq̇k − L(q, q̇) =

= 1

2

(

p21 + p22
q2
1

+ p23
q2
1 sin2q2

)

− G
m1 + m2

q1
= −α1. (4.308)

Using (4.300), we built the corresponding Jacobian function:

1

2

[(
∂W

∂q1

)2
+ 1

q2
1

(
∂W

∂q2

)2
+ 1

q2
1 sin2q2

(
∂W

∂q3

)2
]

+

− G
m1 + m2

q1
= −α1. (4.309)

Since the coordinate q3 appears only in the term:

h3 =
(

∂W

∂q3

)2
, (4.310)

in searching for a solution of equation (4.309) we can apply the variable separation
technique in the form:

W (q1, q2, q3) = W ′(q1, q2) + W3(q3). (4.311)

From (4.288) and (4.289) we then have:

h3 =
(

d

dq3
W3(q3)

)2
= α2

3, (4.312)

where α2
3 is an arbitrary (necessarily not negative) constant, and:

1

2

[(
∂W

∂q1

)2
+ 1

q2
1

{(
∂W

∂q2

)2
+ α2

3

sin2q2

}]

− G
m1 + m2

q1
= −α1. (4.313)

In this last equation, the variable q2 appears only in the combination:



192 4 Analytical Mechanics

h2 =
(

∂W ′

∂q2

)2
+ α2

3

sin2q2
. (4.314)

We then set:
W ′(q2, q3) = W1(q1) + W2(q2), (4.315)

or:
W (q1, q2, q3) = W1(q1) + W2(q2) + W3(q3), (4.316)

obtaining:

h2 =
(

d

dq2
W2(q2)

)2
+ α2

3

sin2q2
= α2

2, (4.317)

where α2
2 is an arbitrary constant, and:

1

2

[(
dW1

dq1

)2
+ α2

2

q2
1

]

− G
m1 + m2

q1
= −α1. (4.318)

With this the Jacobi equation reduces to the three ordinary differential equations
(4.312), (4.317), and (4.318). Indeed, as shown by the relation (4.316), the solution
of (4.309) is simply the sum of the solutions of these three independent equations.

By interpreting the Jacobi equation as a canonical transformation in the new
constant coordinates Qk and Pk (k = 1, . . . , 3), according to (4.279) we place:

Q1 = α1,

Q2 = α2, (4.319)

Q3 = α3.

We can readily see the meaning of the new coordinates. Remembering the relation
(4.300), from (4.312) it is:

(
d

dq3
W3(q3)

)2

= p23 = α2
3, (4.320)

or, through the third of equations (4.307):

(
q2
1 sin2q2 q̇3

)2 = α2
3 . (4.321)

Finally, from the equivalence (4.302) between spherical and generalized coordinates
we obtain the expression:

α3 = ±(
r2 sin2θ φ̇

)
, (4.322)
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which shows that the constant α3 corresponds, except for the sign, to the z component
of the angularmomentumof the P2 relative to P1. Since this axis is arbitrarily oriented,
the condition (4.322) involves the invariance of the instantaneous plane of motion;
the double sign is instead the consequence of the two possible directions P2 can
assume in its orbital motion. From (4.317), by the definition of the momentum p2
given in (4.300) and (4.307), we have:

q4
1 q̇

2
2 + α2

3

sin2q2
= α2

2, (4.323)

or, through (4.302) and (4.322):

α2 = ± r2
√

θ̇2 + sin2θ φ̇2. (4.324)

This relation proves the constancy of the total angular momentum module. Finally,
we recall that, according to (4.309), α1 represents the total specific energy of the
system.

We now express the constants αk , i.e., the new constant canonical coordinates Qk ,
through the usual conic elements of the orbits, arbitrarily choosing positive values
in the relations (4.322) and (4.324):

Q1 =α1 = G
m1 + m2

2a
,

Q2 =α2 = h =
√
G (m1 + m2) a (1 − e2), (4.325)

Q3 =α3 = h cos i =
√
G (m1 + m2) a (1 − e2) cos i.

To derive the corresponding conjugated moments, we use the relations (4.280):

P1 = t + β1 = − ∂W

∂Q1
= −∂W

∂α1
,

P2 =β2 = − ∂W

∂Q2
= −∂W

∂α2
, (4.326)

P3 =β3 = − ∂W

∂Q3
= −∂W

∂α3
.

The characteristic function W , given by (4.316), can be written in the form:

W (q1, q2, q3, α1, α2, α3) =
3∑

k=1

∫ qk dWk

dqk
dqk, (4.327)

or, through the relations (4.312), (4.317), and (4.318):
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W (q1, q2, q3, α1, α2, α3) =
∫ q1

dq1

√

−2α1 + 2G
m1 + m2

q1
− α2

2

q2
1

+

+
∫ q2

dq2

√

α2
2 − α2

3

sin2q2
+

∫ q3

α3 dq3. (4.328)

Replacing this expression in (4.326) and making use of the equivalences (4.302), we
have:

P1 = t + β1 =
∫ r r dr

√
−2α1 r2 + 2G (m1 + m2) r − α2

2

,

P2 = β2 =
∫ r α2/r dr

√
−2α1 r2 + 2G (m1 + m2) r − α2

2

+
(4.329)

−
∫ θ α2 sin θ dθ

√
α2
2 sin2θ − α2

3

,

P3 = β3 =
∫ θ α3 dθ

sin θ

√
α2
2 sin2θ − α2

3

−
∫ φ

dφ.

These relations show that the moments Pk can be obtained by quadrature. We can
save ourselves the tedious calculation of the integrals that appear in (4.329). Indeed,
the moments Pk conjugated to the coordinates Qk given by (4.325):

P1 = t − t◦,
P2 = ω = π − �, (4.330)

P3 = h cos i,

have been already obtained by another way in Sect. 4.8.7. As we will see in the
following, the dynamic coordinates given by (4.325) and (4.330) have a significant
role in the theory of special perturbations.

4.12 The Variation of Elements

A powerful method to find an approximate solution of N -body problem was devel-
oped by Lagrange specifically to investigate the motion of the System Solar planets
(cf. Sect. 3.6). In this section we prove the famous Lagrange equations for the varia-
tions of the orbital elements and then make some applications.

Let be H◦(p, q, t) the Hamiltonian of a mechanical system with n degrees of
freedom. Suppose further that the same mechanical system is subject to new con-
ditions (for example, by adding other forces) and indicate the corresponding new
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Hamiltonian with H(q, p, t). We assume also that the two Hamiltonians are such
that:

H(p, q, t) = H◦(p, q, t) + R(p, q, t). (4.331)

The function R is called the perturbing Hamiltonian. We will show below that the
solution to the problem related toH is given by:

dai
dt

=
2n∑

k=1

(ak, ai )
∂R(a, t)

∂ak
(i = 1, . . . , 2n), (4.332)

where the 2n variables ai represent, at any moment, a possible set of motion con-
stants for the Hamiltonian H◦(p, q, t). In particular, if the constants are canonical,
distinguishing by αk and βk the coordinates from the conjugated moments, for the
conditions (4.192) the equations (4.332) simplify to:

dαk

dt
= ∂R(β, α, t)

∂βk (i = 1, . . . , n). (4.333)dβk

dt
=−∂R(β, α, t)

∂αk

The system of Hamilton equations for H:

q̇k = ∂H

∂pk
= ∂H◦

∂pk
+ ∂R

∂pk
(k = 1, . . . , n), (4.334)

ṗk = −∂H

∂qk
=−∂H◦

∂qk
− ∂R

∂qk

is equivalent to the system of differential equations (H.14) treated in Appendix H,
if we identify the partial derivatives of H◦ with the functions fk and the partial
derivatives of R with the functions rk . Therefore, the solution of the system (4.334)
will be given by functions such as:

qk =qk(t, a1, a2, . . . , a2n)
(k = 1, . . . , n). (4.335)

pk = pk(t, a1, a2, . . . , a2n)

The constants ak relative toH◦ are now thought of as functions of time, which must
satisfy the conditions (H.17):
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2n∑

k=1

∂qi
∂ak

dak
dt

= ∂R

∂pi
(i = 1, . . . , n). (4.336)2n∑

k=1

∂pi
∂ak

dak
dt

=− ∂R

∂qi

We multiply the first ones of (4.336) by ∂pi/∂a j and the second ones by −∂qi/∂a j ,
and then we sum up according to the index i . It results:

2n∑

k=1

dak
dt

n∑

i=1

(
∂pi
∂a j

∂qi
∂ak

− ∂qi
∂a j

∂pi
∂ak

)

=
n∑

i=1

(
∂R

∂pi

∂pi
∂a j

+ ∂R

∂qi

∂qi
∂a j

)

, (4.337)

or, noting that the second summation on the left side of the equation is a Lagrange
bracket and that on the right side is the derivative of R with respect to a j :

2n∑

k=1

[a j , ak]dak
dt

= ∂R

∂a j
( j = 1, . . . , 2n). (4.338)

Recalling the relations between Lagrange and Poisson brackets, it is immediate to
invert the system (4.338) with respect to the time derivatives of the functions a j .
What we obtain is just the (4.332). Finally, from this we easily obtain the (4.333)
if the 2n functions a j form a canonical set for the Hamiltonian H◦, since then the
canonical conditions (4.334) hold.

One may ask how it is possible that variable functions can be at the same time
constant solutions of the unperturbed problem. The explanation lies in the fact that
functions ak (or equivalent canonical functions) can be thought of as constants of
motion of the unperturbed problem relative to initial conditions variable with time.
This is precisely the starting point of Lagrange’s thought, which is expressed in the
notion of osculating orbit. The notion is so important that it deserves an illustrative
example. First, however, let us explicit the (4.332) for the constants of the elliptical
orbit, a, e, δ◦, �, ω, and i . Making use of expressions of the Poisson brackets
calculated in Sect. 4.7, we have:
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da

dt
= (δ◦, a)

∂R

∂δ◦
= 2

n a

∂R

∂δ◦
, (4.339a)

de

dt
= (δ◦, e)

∂R

∂δ◦
+ (ω, e)

∂R

∂ω
=

√
1 − e2

n a2e

(√
1 − e2

∂R

∂δ◦
− ∂R

∂ω

)

, (4.339b)

dδ◦
dt

= (e, δ◦)
∂R

∂e
+ (a, δ◦)

∂R

∂a
= − 1

n a2

(
1 − e2

e

∂R

∂e
+ 2a

∂R

∂a

)

, (4.339c)

d�

dt
= (i,�)

∂R

∂i
= 1

n a2
√
1 − e2 sin i

∂R

∂i
, (4.339d)

dω

dt
= (e, ω)

∂R

∂e
+ (i, ω)

∂R

∂i
=

√
1 − e2

n a2

(
1

e

∂R

∂e
− cot i

1 − e2
∂R

∂i

)

, (4.339e)

di

dt
= (�, i)

∂R

∂�
+ (ω, i)

∂R

∂ω
=

= 1

n a2
√
1 − e2

(

− 1

sin i

∂R

∂�
+ cot i

∂R

∂ω

)

. (4.339f)

4.12.1 Example to Illustrate the Method of the Variation of
Constants

The mathematical and conceptual basis of the perturbation theory is often obscured
by the large number of variables at play and by the considerable complexity of the
formalism. To grasp the essential characteristics of the method, it is convenient to
resort to a simple example. Following Forest Ray Moulton ([2] at pp. 367–72), we
look for the solution of the equation:

ẍ + ω2x = −μẋ3 + ν cos( f t), (4.340)

where ω2, μ, ν, and f are positive constants. If μ and ν are null, equation (4.340)
reduces to that of a harmonic motion, as that of a simple unperturbed pendulum.
Therefore, the terms at the right-hand side of (4.340) represent perturbations on a
purely harmonic motion. The first of them is velocity-dependent, as it may happen to
a pendulum under the action of a resistant medium. The third power of the velocity
is not chosen for physical reasons but only to satisfy the needs of our example;
an even power would have made the strength of the perturbation independent of the
direction of motion, while the first power would have allowed immediate integration.
The second term at the right-hand side in equation (4.340) represents a periodic
perturbation depending only on time.

Following the methodology of the theory of special perturbations, we transform
the differential equation of the second order (4.340) in a system of two first order
differential equations, placing:
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y = x, z = ẋ, (4.341)

with which we obtain:
{
ẏ − z = 0,
ż + ω2y = −μ z3 + ν cos( f t).

(4.342)

The corresponding equations of the unperturbed motion are:

{
ẏ − z = 0,
ż + ω2y = 0,

(4.343)

whose general integral is:

y=α cos(ωt) + β sin(ωt),
(4.344)

z=−ω α sin(ωt) + ω β cos(ωt),

whereα andβ are arbitrary integration constants. In the language of celestialmechan-
ics, they are the motion constants for the pendulum of our example.

Now consider the problemposed by the system (4.342).We look for solutionswith
the same form of (4.344), relative to the unperturbed motion, with the condition that
α and β are now functions of time. From the mathematical point of view, the (4.344)
are simply relations between two sets of independent variables, the original ones,
y and z, and the new variables, α and β. They make possible the transformation of
equations (4.342) from one system to another. It is evident that this statement remains
true whatever the meaning of the relations (4.344) be, but since they are solutions of
the unperturbed system (for constant α and β), we expect to obtain some advantage
by operating this particular transformation of variables.

Based on the above considerations, in (4.342) we replace the variables y and z of
(4.344) with α and β, thought of as functions of time. We obtain:

α̇ cos(ωt) + β̇ sin(ωt) = 0,
(4.345)

− α̇ sin(ωt) + β̇ cos(ωt) = μω2
[
α sin(ωt) − β cos(ωt)

]3 + ν

ω
cos( f t).

This linear system in α̇ and β̇ can be solved with respect to these variables since the
functional determinant is different from zero. It is:

α̇ = −μω2
[
αsin(ωt) − βcos(ωt)

]3
sin(ωt) − ν

ω
cos( f t) sin(ωt),

(4.346)
β̇ = μω2

[
αsin(ωt) − βcos(ωt)

]3
cos(ωt) + ν

ω
cos( f t)cos(ωt).

In searching for the solution, the system of equations (4.346) presents the same
difficulties as the (4.342), where it comes from. Indeed, the functions α and β show
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the same complex algebraic structure with which y and z appear in (4.342). One
wonders, then, where the benefits of the transformation is.

To find them, consider the case where the parameters μ and ν have very small
values (relative to somethingwewill specify later). Thismeans that, correspondingly,
α̇ and β̇ have small values, so α and β vary slowly. Consequently, these two functions
can be calculated with sufficient accuracy over a considerably wide interval of time
if the system equations (4.346) are integrated treating α and β as constants at the
second members. Note that this approximation does not affect the solution of the
unperturbed problem, which remains as accurate as it was.

To better understand this point, which is the core of the method, we consider the
simple equation:

α̇ = μα
[
1 + ω cos(ωt)

]
, (4.347)

whose solution is:
α = α◦ exp

{
μ

[
t + sin(ωt)

]}
, (4.348)

where α◦ is an integration constant. By developing the second member of (4.348) in
a power series of the parameter μ, the expression of α becomes:

α = α◦
{
1 + μ

[
t + sin(ωt)

]
+ μ2

2

[
t + sin(ωt)

]2 + · · ·
}
. (4.349)

Now, if μ is very small and t not too large22 (the limit on time would not be required
if this appeared only as an argument to the trigonometric functions), the expansion
(4.349) can be truncated at the first order, keeping a good approximation. The same
result could have been achieved by direct integration of (4.347) with the condition
α = α◦ for the second term.

We then return to the (4.346) to integrate them in the approximation which treats
as constants the functions α and β at the second members (we remark this fact by
adding the suffix �). The laborious quadrature returns:

22 Note that in this case the variable t plays the function of a time interval, counted from the instant
t◦ = 0.
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α = α◦ − μω2

{
3α�

8

[
α2

� + β2
�

]
t + β�

8ω

[
3α2

� + β2
�

][
cos(2ωt) − 1

]
+

− β�

32ω

[
3α2

� − β2
�

][
cos(4ωt) − 1

]
+

− α3
�

4ω
sin(2ωt) + α�

32ω

[
α2

� − 3β2
�

]
sin(4ωt)

}

+

+ ν

2ω( f + ω)

{
cos

[
( f + ω) t

] − 1
}

+

− ν

2ω( f − ω)

{
cos

[
( f − ω) t

] − 1
}
,

(4.350)
β = β◦ + μω2

{

−3β�

8

[
α2

� + β2
�

]
t − α�

8ω

[
α2

� + 3β2
�

][
cos(2ωt) − 1

]
+

+ α�

32ω

[
α2

� − 3β2
�

][
cos(4ωt) − 1

]
+

− β3
�

4ω
sin(2ωt) + β�

32ω

[
3α2

� − β2
�

]
sin(4ωt)

}

+

+ ν

2ω( f + ω)
sin

[
( f + ω) t

] +

+ ν

2ω( f − ω)
sin

[
( f − ω) t

]
,

where α◦ and β◦ are the values of α and β at the initial time t = 0. Finally, replacing
the (4.350) in the (4.344), we obtain the approximate expressions of x and y, valid
for values of t not too distant from the initial instant of time.

By examining the second terms of each of the (4.350), we note that time t appears
as a factor in one of the terms, while in all the others it is an argument of periodic
functions. The presence of a term directly proportional to t may suggests that α and
β increase (or decrease) indefinitely with time. This is a hasty conclusion, though,
which does not take into account the fact that the (4.350) are approximate solutions,
acceptable within a limited time interval. It could be that the exact solution might
contain powers of t greater than the first and that the sum of all these termswould still
converge for any value of t . Think, for example, of an expansion of the sine function:

sin t =
∞∑

i=0

(−1)i
t2i+1

(2i+1)! . In the first order approximation, it results sin t = t , an

expression that, whether taken at plain face, would lead to the absurd that sin t > 1
for t > 1 radiants. On the other hand it is not possible to exclude, in the absence of
further investigations, that the terms proportional to t indicate really an indefinite
increase of α and β over time. If this fact is verified, these terms are named secular.

The second terms of (4.350) also contain periodic terms of periods
2π

ω
,

π

2ω
,

2π

( f + ω)
,

2π

( f − ω)
. If f 
 ω, the terms with the cosine of ( f − ω)t are named long

period terms.
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4.13 Apsidal Precession

Consider a classic problem of two bodies P1 and P2 with m1 � m2 and E < 0 and
assume that their otherwise elliptical orbit is perturbed by a force (per unit of reduced
mass):

fp = −αm1
k

rk+1

r
r

(k ≥ 2), (4.351)

where α is a constant (we place the gravitational constant G = 1) and r = −−→
P1P2.

Being purely radial, the perturbing force fp does not alter the centrality of the motion
of P2, which therefore remains on a plane; in other words, the inclination does
not change. We chose this plane as fundamental for the reference system, so the
constants needed to describe the motion reduce to four; they can be, for instance, the
independent orbital elements a, e, t◦, and π = � + ω (the longitude at the ascending
node and the argument of the pericenter cannot be independently defined because,
with our choice of the reference system, the line of the nodes remains undetermined).
Let us study the effect of the perturbation produced by (4.351) on line of apsides of
the Keplerian orbit (that is, on the orientation of the major axis of the elliptical orbit),
calculating the variation δπ of the longitude of the pericenter, π , in the time interval
of one period.

Adding (4.339d) to (4.339e), and recalling that, with our assumption on fp, the
inclination i is invariant, we have (for the unit mass μ = 1):

dπ

dt
= (e, ω)

∂R

∂e
=

√
1 − e2

n a2 e

∂R

∂e
. (4.352)

The perturbation term R of Hamiltonian H = H0 + R coincides with the potential

of the force fp = ∇R = ∇
(αm1

rk

)
, and therefore:

dπ

dt
=

√
1 − e2

n a2 e

(

−k αm1

rk+1

)
∂r

∂e
. (4.353)

From (2.52), r = a(1 − e cos E), we have:

∂r

∂e
= a

(

− cos E + e sin E
∂E

∂e

)

, (4.354)

and, from the Kepler equation (2.54), E − e sin E = M = n(t − t0):

(
1 − e cos E

) dE

de
− sin E = 0, (4.355)

with which:
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∂r

∂e
= a

(

− cos E + e sin2 E

1 − e cos E

)

= a
e − cos E

1 − e cos E
. (4.356)

In conclusion:
dπ

dt
= k αm1

√
1 − e2

n e ak+2

cos E − e

(1 − e cos E)k+2
. (4.357)

In order to integrate the equation (4.357), we use the approximation illustrated in
the example of Sect. 4.12.1, justifiable on the basis of the Poincaré theorem. The
idea is the following: the motion of P2 is perturbed, but in a short interval of time
the deviations from the Keplerian orbit are modest if the perturbation is small. In
this case the orbit elements do not change significantly during one revolution, and
can be considered constant in the second term of (4.357); see also the example at
page 197. Only the eccentric anomaly E and the radius r (in turn dependent on E)
remain functions of time. Under these working assumptions, we integrate (4.357)
over a complete revolution, and denote the corresponding change in the longitude of
the pericenter by δπ .

It is convenient to use the eccentric anomaly as the integration variable; it appears
both explicitly and implicitly as an argument of r . Differentiating theKepler equation
with respect to time in the hypothesis that a, n, and t◦ stay constant (enough) within
a period, we have:

(
1 − e cos E

) dE

dt
= n, (4.358)

and therefore, making also use of (2.83):

dπ

dE
= dπ

dt

dt

dE
= k αm1

√
1 − e2

n2 e ak+2

cos E − e

(1 − e cos E)k+1
. (4.359)

Then, using Kepler’s third law: n2a3 = m1 (remember that G = 1)

dπ

dE
= k α

√
1 − e2

ak−1 e

cos E − e

(1 − e cos E)k+1
=

= k α

√
1 − e2

ak−1 e2
e cos E − e2

(1 − e cos E)k+1
=

= k α

√
1 − e2

ak−1 e2
e cos E − 1 + 1 − e2

(1 − e cos E)k+1
=

= k α

√
1 − e2

ak−1 e2

[

− 1 − e cos E

(1 − e cos E)k+1
+ 1 − e2

(1 − e cos E)k+1

]

=

= k α

√
1 − e2

ak−1 e2
[
(1 − e2)Ak+1 − Ak

]
, (4.360)

where:
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Ak = 1

(1 − e cos E)k
. (4.361)

The limits for a revolution still remain to be defined. We take E = 0 and E = 2π .
In the perturbed motion, the variable E defined in the Kepler equation in which a,
e, and t◦, are explicit functions of time, is called osculating eccentric anomaly. It
is called anomalistic a revolution confined within the values E = 0 and E = 2π ,
corresponding to two successive transits through the pericenter. In the quadrature of
the right-hand side of (4.360), we find integrals of the type:

Bk =
∫ 2π

0
Ak dE =

∫ 2π

0

dE

(1 − e cos E)k
. (4.362)

Through the relations (2.51b), we have:

Bk = 1

(1 − e2)(2k−1)/2

∫ 2π

0
(1 + e cos θ)k−1dθ, (4.363)

which, in the special cases of k = 2, 3, 4, easily integrates into:

B2 = 2π
(
1 − e2

)3/2 , (4.364a)

B3 = π (2 + e2)
(
1 − e2

)5/2 , (4.364b)

B4 = π (2 + 3e2)
(
1 − e2

)7/2 . (4.364c)

(Do not confuse here the symbol π at the numerator of Bk with the longitude; it is
Archimedes’s constant 3.14159 . . . .)

The change of the longitude of pericenter, π , for a complete revolution is then:

δπ = k α

√
1 − e2

ak−1 e2

[
− Bk + (1 − e2) Bk+1

]
, (4.365)

and in particular, for k = 2:

δπ = 2π α

(1 − e2) a
, (4.366)

and for k = 3:

δπ = 6π α

(1 − e2)2 a2
. (4.367)

Summarizing, if on the plane of the orbits of two bodies we introduce a small per-
turbing radial force that varies as an inverse power low of the distance, it produces
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an advancement of the periastron. For the same force, the effect of the perturbation
within a period is larger for a smaller semi-axis and/or a larger flattening.

4.14 The Two-Body Problem in General Relativity

Following up on the topic discussed in the previous section, here we evaluate the rel-
ativistic effects on the perihelion advance of a planetary orbit.23 Applied to Mercury,
this effect has provided one the main tests of general relativity and chronologically
the first to be carried out, of the three originally proposed in 1915 by Einstein.24

During the 19-th century, in fact, it came to be determined that Mercury’s perihelion
precession is equal to 5600 seconds of arc (≈1.6degrees) per century,25 all accounted
for by the methods of classical celestial mechanics, excluding 43 arc seconds that
required further assumptions to be made. This tension between theory and fact, often
the bearer of important advances in science, required a drastic change of paradigm.
The tiny little drift could be explained in 1919 in the framework of general relativ-
ity and not, as proposed in 1859 by the discoverer of Neptune, Urbain Le Verrier,
assuming the perturbing action of an unseen planet placed between Mercury and the
Sun (that Le Verrier, without waiting for confirmation, had even already baptized
with the name of Vulcan, the god of fire).

We start recalling that, in classical mechanics, the Lagrangian of a free particle is
given by the kinetic energy:

L = m

2
v2. (4.368)

In the relativistic case, the Lagrangian of the same particle of mass m in a field with
metric gik has the following expression:

L = m

2
gik

∂xi

∂τ

∂xk

∂τ
i = 0, . . . , 3. (4.369)

Here gik is a metric tensor and τ the proper time (i.e., the time as measured by a
clock following a timelike world line). The Lagrangian equation (4.24) applied to
this function gives the geodesic equation.

23 This section requires some knowledge of general relativity but the topic has been treated in a way
that does not presume the knowledge of tensor calculus.
24 The other two were the bending of light in gravitational fields (with an angular value which is
twice that of the Newtonian case), observed in 1919 during a Solar eclipse by Arthur Eddington
(1882–1944), and the gravitational redshift (relative frequency shift of an electromagnetic wave
due to the gravitational field of a compact object), clearly measured only in 1954.
25 Note that only 574 out of the 5600seconds of arc per century are caused by physical effects; the
bulk is due to the motion of the reference system with respect to an inertial one

(
astronomers adopt

the International Celestial Reference System (ICRS) that is almost coincident with the equatorial
system at the year 2000.0

)
.



4.14 The Two-Body Problem in General Relativity 205

We want to consider the motion of the test particle m around a body of mass
M � m. The spherically symmetric solution of the Einstein equation in vacuum26

is described by the Schwarzschild metric:

ds2 =
(
1 − rg

r

)
c2dt2 − dr2

(
1 − rg

r

) − r2
(
dθ2 + sin2 θdφ2

)
, (4.370)

where x0 is time coordinate and (r, θ, φ) are spherically coordinates:

x0 = ct, x1 = r, x2 = θ, x3 = φ. (4.371)

The components of the metric tensor are:

g00 = 1 − rg
r

,

g11 = −
(
1 − rg

r

)−1
,

(4.372)
g22 = −r2,

g33 = −r2 sin2 θ,

and the gravitational radius for the mass M is:

rg = 2GM

c2
. (4.373)

In the following, we put for simplicity the speed of light c = 1 and the mass of the
test particle m = 1.

Taking into account the components of the metric tensor (4.372), the Lagrangian
(4.369) is:

L = 1

2

⎡

⎢
⎣
(
1 − rg

r

)(
dx0

dτ

)2

− 1

1 − rg
r

(
dr

dτ

)2
+

− r2
(
dθ

dτ

)2
− r2 sin2 θ

(
dφ

dτ

)2
]

. (4.374)

Using (4.37) we can write the 4 momenta of the system which correspond to the 4
coordinates:

p0 = ∂L

∂ ẋ0
=

(

1 − r

rg

)
dx0

dτ
, (4.375a)

26 Einstein equation in vacuum is Rik = 0, where Rik is the Ricci tensor. Gregorio Ricci Curbastro
(1853–1925) was an Italian mathematician, famous for the invention of the tensor calculus.
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pr = ∂L

∂ ṙ
= −

(

1 − r

rg

)−1 dr

dτ
, (4.375b)

pθ = ∂L

∂θ̇
= −r2

dθ

dτ
, (4.375c)

pφ = ∂L

∂φ̇
= −r2 sin2 θ

dφ

dτ
, (4.375d)

where the upper dot denotes the derivation by the proper time τ . Through (4.38),
consider the derivative of momentum:

ṗθ = ∂L

∂θ
= r2 sin θ cos θφ̇2. (4.376)

Through (4.375c), we can also see that:

ṗθ = d

dτ

(

−r2
dθ

dτ

)

= −2rṙθ − r2θ̈ . (4.377)

As initial conditions we consider the equatorial plane (θ = π/2) and θ̇ = 0, which,
from (4.376), give ṗθ = 0. Since the left part of (4.377) is null, the condition θ̇ = 0
implies θ̈ = 0. In this case the orbit lies on a plane with θ = π/2. This result is
similar to Newton’s.

Since the Lagrangian does not depend on x0 and φ, the corresponding momenta
are constant. Integrating (4.375a) and (4.375d) with θ = π/2, we have:

(
1 − rg

r

) dx0

dτ
= const1 = E, (4.378)

r2
dφ

dτ
= const2 = J. (4.379)

Here the constants are the energy of the particle and the angular momentum respec-

tively. Massive test particles move in timelike geodesics,27 so gil
dxi

dτ

dxl

dτ
= 1, and

the Lagrangian is 2L = 1. Substituting (4.378) and (4.379) in (4.374) and taking into
account the condition for timelike geogesics 2L = 1 together with θ = π/2, we get:

(
dr

dτ

)2
+

(
1 − rg

r

)(

1 + J 2

r2

)

= E2. (4.380)

27 A timelike interval must satisfy the condition ds2 ≥ 0, i.e., the interval between two event is real.
If there is a reference system in which two events occur in the same place, the interval is always a
timelike one because always dl < cdt .
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To obtain the equation of the trajectory, we need to express r making φ explicit:

dr

dτ
= dr

dφ

dφ

dτ
= dr

dφ

J

r2
, (4.381)

and: (
dr

dφ

)2
= r4

J 2

[

E2 −
(
1 − rg

r

)(

1 + J 2

r2

)]

. (4.382)

The equation of the trajectory is:

r =
∫

dφ
r2

J

[

E2 −
(
1 − rg

r

)(

1 + J 2

r2

)]1/2

. (4.383)

This integral cannot be solved by elementary functions and requires elliptical inte-
grals (see Sect.N.4). Placing u = 1/r , from which dr = −du/u2, (4.382) takes the
form: (

du

dφ

)2
= 1

J 2

[
E2 − (

1 − rgu
) (
1 + u2 J 2

)]
, (4.384)

which, after simplifications, becomes:

(
du

dφ

)2
= rgu

3 − u2 + rg
J 2

u − 1

J 2

(
1 − E2

)
. (4.385)

In the non-relativistic case, it can be proven that the corresponding equation has the
form: (

du

dφ

)2
= −u2 + 2GM

J 2
u + E

J 2
. (4.386)

There is a clear difference between the two cases,mainly the presence of an additional
term. So, we can see (cf. Bertrand’s theorem at Sect. 2.2) that in the relativistic case
the orbit will not be closed, at variance with the classical two-body problem.28

We further change the variables placing:

u = 1

p

(
1 + e cos θ ′) , (4.387)

which is the orbit equation (2.64) in the classical two-body problem, where p =
a(1 − e2) is the focal parameter, e the eccentricity, a the major semiaxis length,
and θ ′ the true anomaly (we added the superscript to remark the difference with θ ,
which here is just the polar angle of the spherical reference frame). This form is
convenient as we can compare the revolution by θ ′ with the corresponding angle φ.

28 Note that the precession obtained in the previous section corresponds to a perturbed two-body
problem.
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Consequently, the left part of (4.385) is:

(
du

dφ

)2
=

(
du

dθ ′
dθ ′

dφ

)2
= e2

p2
sin2 θ ′

(
dθ ′

dφ

)2
, (4.388)

so that the equation (4.385) has the following form:

e2

p2
sin2 θ ′

(
dθ ′

dφ

)2
= rg f (u), (4.389)

where:

f (u) = u3 − 1

rg
u2 + u

J 2
− 1

rg J 2
(1 − E2). (4.390)

Taking into account Vieta’s29 theorem, the expression (4.390) writes as:

f (u) = (u − u1)(u − u2)(u − u3) =
= u3 − u2(u1 + u2 + u3) + u(u1u2 + u1u3 + u2u3) − u1u2u3, (4.391)

where u1, u2, u3 are the roots of equation: f (u) = 0. Comparing (4.390)with (4.391),
we obtain:

u1 + u2 + u3 = 1

rg
, (4.392a)

u1u2 + u1u3 + u2u3 = 1

J 2
, (4.392b)

u1u2u3 = 1

rg J 2
(1 − E2). (4.392c)

Since we consider the equation (du/dφ)2 = rg f (u), then f (u) ≥ 0 and f (u) = 0
corresponds to extremes of u. Therefore, we can parametrise the two roots as:

u1 = umin(θ = π) = (1 − e)/p (apoapsis),
u2 = umax (θ = 0) = (1 + e)/p (periapsis).

The third root is obtained from (4.392a) using the expressions above:

u3 = 1/rg − 2/p,

and:

f (u) = (u − u1)(u − u2)(u − u3) = − e2

p3
sin2 θ ′

(

3 + e cos θ ′ − p

rg

)

, (4.393)

29 Vieta’s formulas relate the coefficients of a polynomial to sums and products of its roots. Named
after François Viète (1540–1603), more commonly referred to by the Latinate form of his name,
“Franciscus Vieta”, the formulas are used specifically in algebra.
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where we applied the (4.387). Substituting it in (4.389), we obtain:

(
dθ ′

dφ

)2
= 1 − rg

p

(
3 + e cos θ ′) . (4.394)

The solution of this differential equation gives us the orbit for this relativistic case.
The function θ ′(φ) can be expressed through elliptical integrals. To see it, we put
cos θ ′ = 2 cos2(θ ′/2) − 1 in (4.394), obtaining:

(
dθ ′

dφ

)2
= (1 − 3b + be)

(
1 − k2 cos2(θ ′/2)

)
, (4.395)

where:

k2 = 2be

1 − 3b + be
, (4.396)

with b = rg/p. Note that 1 − 3b + be > 0 and k2 < 1. We rewrite equation (4.395)
in the form:

dθ ′
√
1 − k2 cos2(θ ′/2)

= ±√
1 − 3b + be dφ. (4.397)

The integral of the left part of (4.397) can be expressed through the elliptical integral
using the following substitution; β = π/2 − θ ′/2. So, we have:

φ = ±
2 K

(
π

2
− θ ′

2
, k

)

√
1 − 3b + be

, (4.398)

where:

K (β, k) =
∫ β

0

dβ ′
√
1 − k2 sin2 β ′ , (4.399)

is the incomplete elliptic integral of the first kind (see Sect.N.4) and k its modulus
determined by (4.396).

To obtain the value of the perihelion shift, we need to invert equation (4.398) with
respect to θ ′:

θ ′ = π − 2 am

(
φ

2
√
1 − 3b + be

, k

)

, (4.400)

where am(β, k) is the Jakobi amplitude which is the inverse function relative to the
incomplete elliptic integral of the first kind: K

(
am(β, k)

) = β. By substituting it in
(4.387), we finally obtain the equation of the orbit:
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r = p

1 + e cos

[

π − 2 am

(
φ

2
√
1 − 3b + be

, k

)] . (4.401)

We now use (4.394) in the form:

dθ ′
√

1 − rg
p

(3 + e cos θ ′)
= dφ. (4.402)

We consider the case where rg/p is small (which obviously applies to the planets of
the Solar System) and expand (4.402) in series retaining only the first term:

dθ ′
[

1 + rg
2p

(
3 + e cos θ ′)

]

≈ dφ. (4.403)

After integration, we obtain:

φ − φ0 =
(

1 + 3rg
2p

)

θ ′ + rg
2p

e sin θ ′. (4.404)

One revolution corresponds to θ ′ = [0, 2π ]. For θ ′ = 0, the angle is φ = φ0; for
θ ′ = 2π , we can see from (4.404) that:

Fig. 4.4 Orbit in the
relativistic two-body
problem, showing the
advance of perihelion
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φ − φ0 = 2π

(

1 + 3rg
2p

)

= 2π + �φ, (4.405)

where:

�φ = 3πrg
p

= 3πrg
a(1 − e2)

. (4.406)

The angle (4.406) is the relativistic shift of the perihelion of the planet. It is the
consequence of the fact that the orbit, at variance with the classical case where it is
just Keplerian, here is open with a rosette pattern (Fig. 4.4) because of the curvature
of the space induced by the central mass.

The relativistic shift �φ for one revolution of Mercury due the Sun (using rg =
2.95 km for the Sun and forMercury a� = 57.91 × 106 km, e� = 0.206, and orbital

period P� = 87.6 days) is �φ ≈ 5.01 × 10−7 rad; over 100 years, it returns exactly

�φ = 43′′.
A recent spectacular application of the formula (4.406) concerns the star named

S2 orbiting around the supermassive black hole (SMBH) that sits at the center of
the Milky Way, in Sagittarius (Fig. 4.5). The orbital characteristics of the star (semi-

Fig. 4.5 Apparent orbit of
the star S2 around the
supermassive black hole at
the center of the Milky Way,
from observations with ESO
telescopes and instruments
(listed in the legend) over a
period of more than 25 years.
Note the position of the
SMBH which, because of
projection, is well off the
focus of the apparent orbit
(cf. Appendix J). Credit
ESO/MPE/GRAVITY
Collaboration
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major axis aS2 = 971 AU and eccentricity eS2 = 0.88) derived from very difficult
astrometric and spectroscopic measurements (the system is at a distance of 7.93kpc
from the Earth, where aS2 appears of only 0.123 arc seconds), together with the huge
mass of the galactic SMBH, MBH = 4.1×106 M�, implying a gravitational radius
rg = 1.21 × 107 km, according to (4.406) determine a remarkable apsidal advance
of the stellar orbit, equal to �φ 
 12′ over a period of PS2 = 16.05 years. Direct
measures have confirmed the predictions based on general relativity, which in this
way has received a further robust confirmation (cf. [8]).

References

1. E. Finlay-Freundlich, Celestial Mechanics (Pergamon Press, New York, 1958)
2. F.R. Moulton, An Introduction to Celestial Mechanics (The MacMillan Company, New York,

1960)
3. J.E. Marsden, T.S. Ratiu, Introduction to Mechanics and Symmetry, in Applied Mathematics,

vol. 17 (Springer, Berlin, 1994)
4. H. Goldstein, Classical Mechanics (Addison-Wesley, Boston, 1980)
5. L.D. Landau, E.M. Lifshitz,Mechanics (Elsevier, Amsterdam, 1982)
6. R.A. Broucke, On the matrizant of the two-body problem. Astron. Astrophys. 6, 173–182 (1970)
7. J. Binney, S. Tremaine, Galactic Dynamics (Princeton University Press, Princeton, 1987)
8. R. Abuter et al., Detection of the Schwarzschild precession in the orbit of the star S2 near the

Galactic Center massive black hole. Astron. Astrophys. 636, L5 (2020)



Chapter 5
Gravitational Potential

Lewis Carroll Alice’s Adventures in the Wonderland (1865)
“I could have done it in a much more complicated way”, said
the Red Queen, immensely proud.

In the previous chapters we have limited ourselves to consider only massive points,
i.e., fictitious bodies that attract each other according to a law of force with a seem-
ingly simple mathematical expression: Newton’s law of gravitation.1 This approxi-
mation is successfully applied to many real situations. For instance, it is appropriate
to deal with the motions of the planets of the Solar System, treated as point-like
bodies given the enormous distances among them and the Sun (relative to their
sizes). However, the use of massive particles instead of real bodies (finite and even
asymmetric) prevents us frommodeling phenomena such as spin-orbit interactions.2

Usually, the point-like approximation fails more and more as the distances among
the various bodies, compared to their sizes, reduce. Obviously, Newton’s interaction
law continues to hold true even when we consider forms of bodies more complex
than massive points, but only between pairs of elements of infinitesimal volume in

1 We remember that Newton’s gravitational force acts instantaneously; it propagates at infinite
velocity and does not require any mediator. It was precisely this action at distance that Newton
himself did not trust. Einstein was also unhappy with the infinite propagation velocity which was
against special relativity. It was the need to eliminate this discrepancy that led him to reconsider
gravitation and formulate in 1915–16 the so-called theory of general relativity.
2 The best know example of the spin-orbit interaction is the identity of the rotation and revolution
periods of the Moon which is the reason why the satellite shows always the same side to the Earth
(but for the libration, i.e., the wavering of theMoon perceived by Earth-bound observers and caused
by changes in perspective, by the ellipticity of the orbit, and by an intrinsic oscillation). Other famous
spin-orbit resonances happen with Sun-Mercury, Earth-Venus, and the Medicean planets. See also
Chap. 1 and https://history.nasa.gov/SP-345/ch8.htm.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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which the same bodies can be ideally subdivided. The evaluation of the global effect
(which is the sum of these interactions) goes through an integration process that
often reaches a high level of mathematical difficulty. This led to the development of
tools that we need to know in order to be able to manipulate problems with complex
potentials: pluripotent instruments, which had and still have useful applications in
several branches of mathematical physics. This chapter is devoted to the presenta-
tion of some general methods to describe the properties of the gravitational field
generated by a body of any finite shape, with some relevant examples.

5.1 The Theorem of Gauss or of the Flux

In an orthogonal Cartesian reference system O[x, y, z] we consider the function
ρ(x, y, z) which maps the spatial matter density within the volume � bounded by
the closed surface S. In other words, ρ may describe the mass distribution in a finite
body3 or in that part of a finite body falling inside S. We indicate with:

m(�) =
∫∫∫

�

ρ d�, (5.1)

the total mass enclosed by S, and with:

g(P) = G
∫∫∫

�

ρ
r
r3

d�, (5.2)

the gravitational acceleration vector (gravitational force per unit mass) generated at
any point P(x, y, z) of S from the massm enclosed by S. The flux F of g though S is
the integral of the component gn of g orthogonal to S, extended to the entire surface:

F(S) =
∫∫

S
gn dS =

∫∫
S
g · dS, (5.3)

with the usual rule that dS is an infinitesimal vector perpendicular to the correspond-
ing surface element and oriented outwards; its modulus |dS| is the measure of the
surface of the infinitesimal area element. The Gauss or continuity theorem (also
known as Gauss flux theorem) states that the flux F of the field g through the surface
S depends on the total mass m only and is:

F(S) =
∫∫

S
g · dS = 4π G m. (5.4)

3 What follows remains true for a discrete distribution of massive points too; obviously the integrals
change into summations.
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Replacing into (5.3) the expression (5.2) of the acceleration of gravity, we obtain a
quintuple integral extended to the entire volume � and to the boundary surface S:

F(S) = G
∫∫

S

[ ∫∫∫
�

ρ
r
r3

d�

]
· dS, (5.5)

where the modulus r of the vector:

r = (x ′ − x) i + (y′ − y) j + (z′ − z)k, (5.6)

represents the distance of P from the volume element d�(x ′, y′, z′) belonging to
�, and i, j and k are the unit vectors of the reference system axes. Since the two
integration variables are independent one from the other, it is also:

F(S) = G
∫∫∫

�

d� ρ

∫∫
S

1

r3
r · dS. (5.7)

The scalar r · dS/r3 is the elementary solid angle dω (Fig. 5.1) under which the
volume element d� sees the element dS of the closed surface. Thus:

∫∫
S

r · dS
r3

=
∫∫

4π
dω = 4π. (5.8)

The expression (5.7) becomes then:

F(S) = 4π G
∫∫∫

�

ρ d�, (5.9)

Fig. 5.1 Gauss theorem:
integration of the
gravitational acceleration
vector
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which, together with (5.1), demonstrates the Gauss theorem. Note how the result
is strictly dependent on the proportionality of the acceleration to the inverse of the
square of the distance (in an Euclidean space).

5.2 The Equations of Poisson and Laplace

The Gauss theorem allows us to express the flow of the gravitational acceleration
through a surface enclosing a body (or a cluster of bodies) of space density ρ as:

∫∫
S
g · dS = 4π G

∫∫∫
�

ρ d�. (5.10)

Obviously ρ can be non-zero even outside the boundaries of �, whether S is cutting
thematerial body, but only the inner part counts in (5.10). By applying the divergence
theorem (cf. (C.11) in Appendix C), the surface integral in (5.10) can be transformed
into a volume integral of the function:

∇ · g(x, y, z) = ∂gx
∂x

+ ∂gy
∂y

+ ∂gz
∂z

, (5.11)

where gx , gy, and gz , are the components of g:

∫∫
S
g · dS =

∫∫∫
�

∇ · g d�, (5.12)

so that the (5.10) transforms into:

∫∫∫
�

[
∇ · g − 4π G ρ

]
d� = 0. (5.13)

Since the volume � is arbitrary, the latter is satisfied if and only if the argument of
the integral is identically zero:

∇ · g = 4π G ρ. (5.14)

This equation expresses Gauss’ theorem for a surface enclosing an infinitesimal
volume element: at any point in space, the divergence of the gravitational acceleration
due to a distribution of matter with space density ρ is proportional to the value of
the density at that same point.

With reference to the gravitational field of a given distribution ofmatter ρ(x, y, z),
described by the acceleration vector g(x, y, z), we denote by U(x, y, z) (as we have



5.2 The Equations of Poisson and Laplace 217

already done at Sect. 1.2.1) the function named potential4 defined, up to an additive
constant, by:

g = −∇U, (5.15)

where:

∇U = ∂U

∂x
i + ∂U

∂y
j + ∂U

∂z
k. (5.16)

It can be shown that the potential exists for any distribution ofmatter. In fact, whatever
it is the matter density ρ within the volume �, the function:

U = G
∫∫∫

�

ρ d�

r
, (5.17)

satisfies (5.15). It is:

∇U = ∇
[
G
∫∫∫

�

ρ d�

r

]
, (5.18)

and, since the gradient does not depend on the integration variable:

∇U = G
∫∫∫

�

ρ d� ∇
(
1

r

)
= −G

∫∫∫
�

ρ d�

r3
r. (5.19)

It is apparent from (5.19) why the potential function is defined up to an additive
constant. As a rule, we agree to remove this indeterminacy imposing thatU vanishes
at an infinite distance from the body that generates it; a condition verified by (5.19).
Also note that the gravitational potential does not explicitly depend on time (as it is
instead for the electromagnetic potential, for instance).

Replacing in (5.14) the expression of g given by (5.15), we obtain the famous
Poisson equation:

∇2U(x, y, z) = ∂2U

∂x2
+ ∂2U

∂y2
+ ∂2U

∂z2
= −4π G ρ(x, y, z), (5.20)

where the operator∇2 is calledLaplacian or squared nabla. Its properties are reviewed
in Appendix C together with other vector operators.

4 This function was introduced by Laplace in a memory appeared in 1785; the name of potential
with which it now universally known was subsequently adopted by the British George Green. The
expression ‘potential energy’ was instead coined by the Scottish engineer and physicist William
Rankine (1820–1872) who, together with theGermanRudolf Clausius (1822–1888) and the English
William Thomson, Lord Kelvin (1824–1907), gave fundamental contributions to thermodynamics.
The concept of ‘potentiality’ is far older and goes back to the speculations of Aristotle. The Greek
philosopher identifiedmatterwith ‘power’ and formwith ‘act’. Potency is the possibility of changing
and becoming something else; the act identifies both the activity to bring about change and reality
produced by that activity. It precedes potency with respect to substance and value.
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If the density ρ is zero, as is the case in space outside material bodies, from (5.20)
we obtain the Laplace equation:

∇2U = 0. (5.21)

Most of this chapter will be devoted to the study of this equation. In fact, the solution
of this homogeneous differential equation provides the most general expression for
the potential in the outer space of any body and therefore, through (5.15), also the
expression of the relative force field.

To introduce us to the problem, let us first consider an elementary case, the study
of the potential due to a massive point Q placed outside the origin of the reference
system. This simple shift of the coordinate system from that centered at Q is sufficient
to complicate the expression of the distance that appears at the denominator of
Newton’s law, and therefore the expression of the potential itself. Clearly, in the
case of a single massive point, the obstacle can be overcome by shifting back the
center of the coordinate system at the point Q. But this possibility vanishes when,
for example, there are two or more massive points involved in the computation of
the potential and they are distinct. Thus, the case we propose in the next section is
anything but an academic exercise.

5.3 The Potential of a Massive Point

Given a the spherical reference system of coordinates, the gravitational potential
generated in P(r, θ, φ) by the point-like mass m placed in Q(r◦, θ◦, φ◦), is:

U = G
m

δ
, (5.22)

where (Fig. 5.2):
δ = |−→

QP| = (r2 − 2rr◦ cos γ + r2◦ )1/2, (5.23)

and, using (4.303):

cos γ = r · r◦ = x

r

x◦
r◦

+ y

r

y◦
r◦

+ z

r

z◦
r◦

=
= cos θ cos θ◦ + sin θ sin θ◦ cos(φ − φ◦). (5.24)

It can be shown directly that (5.22) satisfies the Laplace equation for any value of
δ �= 0. Unfortunately, the function δ−1 is hardly tractable; so it is necessary to search
for a different representation of the reciprocal of the distance between P and Q. For
this purpose, let it be:

f (z, μ) = (1 − 2μz + z2)−1/2 |z| < 1, |μ| ≤ 1. (5.25)
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Fig. 5.2 Geometry to
compute the potential
generated by a massive point
placed off the center of the
coordinate system

Placing μ = cos γ , and:

z =
{
r/r◦ for r ≤ r◦,
r◦/r for r ≥ r◦,

(5.26)

the expression of the potential in P (5.22) can be re-written as:

U =

⎧⎪⎨
⎪⎩
G

m

r◦
f (z, μ) for r ≤ r◦,

G
m

r
f (z, μ) for r ≥ r◦.

(5.27)

The first of (5.27) is valid for all points inside the sphere of radius r◦ centered in the
origin O of the coordinate system, while the second one applies to external points.

We will now try to develop the function f (z, μ) in a power series of z. To this
end, note that:

f (z, μ) = (1 − 2μz + z2)−1/2 =
=
∣∣∣1 − z (μ −

√
μ2 − 1)

∣∣∣−1/2 ×
∣∣∣1 − z (μ +

√
μ2 − 1)

∣∣∣−1/2
, (5.28)

as it is proven by running the product directly. By the new variables:

x = −z(μ −√
μ2 − 1),

x ′ = −z(μ +√
μ2 − 1),

(5.29)

the (5.28) clearly shows to be the product of two binomials:

f (z, μ) = (1 + x)−1/2(1 + x ′)−1/2. (5.30)

We firstly demonstrate that:
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|x | = |x ′| < 1. (5.31)

Since by hypothesis |μ| ≤ 1, the quantity (μ2 − 1)1/2 is purely imaginary; therefore:

∣∣∣μ ±
√

μ2 − 1
∣∣∣ = [

(μ ± i
√
1 − μ2)(μ ∓ i

√
1 − μ2)

]1/2 = 1. (5.32)

Then, since we assumed |z| < 1, from the (5.29) it results:

|x | = |z| |(μ −√
μ2 − 1)| = |z| < 1,

|x ′| = |z| |(μ +√
μ2 − 1)| = |z| < 1.

(5.33)

Consequently, each one of the two functions (1 + x)−1/2 and (1 + x ′)−1/2 of (5.30)
can be developed in a binomial series. We remind that the expansion in a Taylor5

series of the function f (x) = (1 + x)m , where m is any complex number:

(1 + x)m =
(
m

0

)
+
(
m

1

)
x + · · · +

(
m

n

)
xn + · · · , (5.35)

with the generalized coefficients being:

(
m

n

)
= m!

n!(m − n)! = m(m−1)(m−2) · · · (m−n+1)

n! , (5.36)

and

(
m

0

)
= 1, converges absolutely6 in the open interval |x | < 1. If m is a positive

integer, the series reduces to the well-known Newton binomial formula. In conclu-
sion, the development of the binomials of (5.30) converges absolutely to these same
functions throughout their common domain. It is:

5 Brook Taylor (1685–1731): British mathematician who, among other achievements, sat in the
commission charged to solve the controversy between Newton and Leibniz about the priority in
the introduction of the differential methodology in mathematical analysis. He authored the famous
equation known as Taylor’s theorem:

f (x) =
∞∑
n=0

(
dn f

dxn

)
x0

(x − x0)n

n! , (5.34)

where the function f (x) is defined in an open interval (x0 − �x, x0 + �x) with real or complex
values and it is infinitely differentiable (if x0 = 0, the expansion is named after the Scottish math-
ematician Colin Maclaurin). The importance of this power series was not recognized until 1772,
when Lagrange realized its value, calling it “the main foundation of differential calculus”.
6 A real or complex series is said to converge absolutely if the sum of the absolute values of the
summands is a finite (real) number. A key property of absolute series is that rearranging the terms,
which is not allowed for conditionally convergent series, does not change the value of the sum.
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(1 + x)−1/2 =
∞∑

m=0

(−1/2

m

)
xm = 1 − 1

2
x + 3

8
x2 − 5

16
x3 + · · · ,

(1 + x ′)−1/2 =
∞∑
n=0

(−1/2

n

)
x ′n = 1 − 1

2
x ′ + 3

8
x ′2 − 5

16
x ′3 + · · · .

(5.37)

Let us multiply the two series by the Cauchy product,7 which ensures that the sum of
the product of two absolutely convergent series coincides with the algebraic product
of the sums of the series themselves. We then have:

f (z, μ) = (1 + x)−1/2(1 + x ′)−1/2 =
∞∑
k=0

Pk(μ) zk . (5.39)

The coefficients Pk(μ) of the powers of z have the form:

P0(μ) = 1, (5.40a)

P1(μ) z = −1

2
x − 1

2
x ′ = μ z, (5.40b)

P2(μ) z2 = 3

8
x2 + 3

8
x ′2 + 1

4
xx ′ =

(
3

2
μ2 − 1

2

)
z2, (5.40c)

. . . . . . . . .

They are called Legendre coefficients or Legendre8 polynomials of degree k. The
function (5.39) has the name of generating function of the Legendre polynomials.

Through the development (5.39), the expression (5.27) of the potential of amassive
point becomes:

U(r) = G
m

r◦

∞∑
k=0

Pk(cos γ )
( r

r◦

)k
for r ≤ r◦, (5.41a)

U(r) = G
m

r

∞∑
k=0

Pk(cos γ )
(r◦
r

)k
for r ≥ r◦. (5.41b)

7 The Cauchy product is a discrete convolution of two infinite series:

∞∑
i=0

fi (x) ×
∞∑
j=0

g j (x) =
∞∑
k=0

k∑
l=0

fl (x)gk−l (x). (5.38)

8 Adrien-Marie Legendre (1752–1833) was a French mathematician. A student of Euler and
Lagrange, he contributed to the fields of geometry, differential calculus, function theory, mechanics,
and number theory. Concepts such as Legendre polynomials and Legendre transformation bear his
name.
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You can see Appendix O for an account on the main properties of the Legendre
polynomials and a useful digression on the family of orthogonal polynomials.

5.4 The Potential of Spherical Bodies

We consider here a massive infinitely thin spherical layer � centered in O , with
radius r◦ and infinitesimal thickness dr◦, and assume that the volume density ρ◦ and
the surface density σ◦ = ρ◦ dr◦ are both constant. We apply the (5.17) to compute
the potential at a generic point P . Owing to the perfect symmetry of the density, we
can always place P on the z-axis of the reference system centered in O (Fig. 5.3).
Whatever the value of r = OP is, all the surface elements of the infinitesimal spher-
ical corona of axis OP and mass dm = 2π σ◦r2◦ sin θ dθ , have the same distance
from P:

QP = (r2 − 2rr◦ cos θ + r2◦ )1/2. (5.42)

Thus:

dU(r) = G
dm

QP
= G

2π σ◦r2◦ sin θ dθ

(r2 − 2rr◦ cos θ + r2◦ )1/2
, (5.43)

and, by integrating over the sphere:

U(r) = G
∫ π

0

dm

QP
= G

∫ π

0

2π σ◦r2◦ sin θ dθ

(r2 − 2rr◦ cos θ + r2◦ )1/2
. (5.44)

Fig. 5.3 Potential of a thin
spherical layer
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The integral in (5.44) reduces to the known form:

U(r) = −2π G σ◦
∫ π

0

d(cos θ)

(r2 + r2◦ − 2rr◦ cos θ)1/2
=

= 2π G σ◦
r◦ r

(
r◦ + r − |r◦ − r |

)
. (5.45)

So, opening the module, we obtain the expression for the potential of the homoge-
neous thin spherical layer:

U(r) =

⎧⎪⎪⎨
⎪⎪⎩

Gm

r
for r ≥ r◦,

Gm

r◦
for r ≤ r◦.

(5.46)

This result can be obtained by another way using the expansion in Legendre polyno-
mials. To solve the integral (5.44) we distinguish the two cases: P external to� (that
is, r > r◦) and P internal to � (r < r◦). In the first case, by placing z = r◦/r < 1,
we have:

Ue(r) = 2π Gσ◦
r2◦
r

∫ π

0

sin θ dθ

(1 − 2z cos θ + z2)1/2
. (5.47)

From (5.39), remembering that the binomial series is absolutely convergent, it results:

Ue(r) = 2π G σ◦
r2◦
r

∫ π

0
−
[ ∞∑

k=0

zk Pk(cos θ)

]
d(cos θ) =

= −2π G σ◦
r2◦
r

∞∑
k=0

zk
∫ π

0
Pk(cos θ) d(cos θ) =

= 2π G σ◦
r2◦
r

∞∑
k=0

zk
∫ +1

−1
P0(μ)Pk(μ) d(μ), (5.48)

where we have placed μ = cos θ and used the identity P0(μ) ≡ 1 (cf. the property
(a) at Appendix O.3) to insert the zero-th order Legendre polynomial in the integral.
By this way we can exploit the orthogonality of Legendre polynomials:

∫ 1

−1
P0(μ)Pk(μ) dμ =

{
2 for k = 0,
0 for k �= 0.

(5.49)

In conclusion, by assuming that r > r◦, we obtain the potential at any point outside
the spherical shell, which is a function of just the radial distance r of P from the
shell center:

Ue(r) = 4π Gσ◦
r2◦
r

= G
m

r
, (5.50)
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as 4π r2◦σ◦ coincides with the total mass m within the volume � (actually over the
thin surface S). The expression just found proves that the potential in a point outside
a thin and homogeneous spherical layer coincides with that of a point of equal mass
placed at the center of the shell.

We now consider the second case, when P is inside �. Placing z = r/r◦ < 1 and
repeating the procedure adopted for the first case, we have:

Ui (r) = 4π G σ◦
r2◦
r◦

= G
m

r◦
. (5.51)

Thus, the potential at any point internal to a thin and homogeneous spherical layer is
constant. These two results have been put together in Fig. 5.6. Note the discontinuity
of ∇U at the surface of the layer, at the radius r = r◦.

The constant value of the inner potential of the spherical layer tells us that the
cumulative force acting on an internal point is zero, whatever the position of the
point. This can be explained in terms of simple physical considerations, similar to
those that made Newton himself to discover this fundamental property. Consider
a point P located within the homogeneous spherical layer and draw two opposite
cones, both emerging from P , with the same small solid angles (Fig. 5.4):

d = dS1
r21

= dS2
r22

. (5.52)

These cones cut two opposite spherical caps with masses dm1 and dm2 proportional
to the areas dS1 and dS2. Then the ratio of themoduli of the gravitational forces acting
in opposite directions on P due to the attraction generated by their mass elements is:

F1

F2
= dm1

R2
1

R2
2

dm2
= dS1

R2
1

R2
2

dS2
= 1, (5.53)

where we used the (5.52). The preceding considerations can be repeated for the case
of an ellipsoidal layer and lead us to the same result, known as Newton’s theorem:
The attraction produced by a homogeneous ellipsoidal layer on a point located in its
inner cavity is zero.

We can now generalize the previous result to a solid sphere with mass m, radius
r◦, and a constant volume density ρ◦. The strategy is to decompose the sphere into
a set of homogeneous shells, each characterized by a radius r ′, and make use of the
results just obtained for the inner and outer potentials of homogeneous layers.

We start considering the inner potential of the solid sphere, i.e. the potential at a
point P(r) which is inside of its volume at a distance r ≤ r◦ from the center. The
spherical surface containing P divides the volume in two regions: [0, r ] and [r, r◦]
(Fig. 5.5). The point P is external to the shells with radii r ′ ≤ r ; hence for them we
resort to the expression (5.50) which in infinitesimal form writes:
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Fig. 5.4 Attraction by
opposite elements of a
homogeneous thin spherical
layer at an inner point P .
The conic elements, drawn
deliberately large for
graphical convenience,
should actually be
infinitesimal

r2

r1
F1

F2

dS1

dS2

P

Fig. 5.5 Scheme of a
homogeneous solid sphere
divided in the set of infinitely
thin spherical layers

dU = 4πGρ◦
r ′2

r
dr ′. (5.54)

But P is also internal to the spheres with radii r ≤ r ′ ≤ r◦. In this case we use the
(5.51):

dU = 4πGρ◦
r ′2

r ′ dr
′ = 4πGρ◦ r ′dr ′. (5.55)

Summing up the (5.54) and the (5.55) duly integrated within the corresponding
radial ranges, we find that potential inside the solid sphere:

Ui (r) = 4πGρ◦
∫ r

0

r ′2

r
dr ′ + 4πGρ◦

∫ r◦

r
r ′dr ′ = 2

3
πGρ◦

(
3r2◦ − r2

)
. (5.56)
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Fig. 5.6 Trend of the
potential of a thin spherical
(blue) and homogeneous
solid sphere (red, where the
two curves are different, then
blue) of the same total mass
and radius r◦, as a function
of the reduced distance r/r◦
from the center

For the outer potential of a solid sphere we take into account the contributions of
all the spherical layers (none of them being ‘external’); in other words, we must
consider only the first integral in (5.56) with upper limit r◦:

Ue(r) = 4πGρ◦
∫ r◦

0

r ′2

r
dr ′ = Gm

r
. (5.57)

In summary, the outer potential of a solid sphere is equivalent to that of a point of
equal mass placed at the center (Fig. 5.6). There is some analogy of this result with
general relativity: according to a theorem due Birkhoff,9 a spherically symmetric
gravitational field in an empty space has to be static with metric corresponding to
the Schwarzschild solution (cf. also Sect. 4.14).

We now want to address this same problem in the framework of the so-called
Dirichlet10 problem, which is to find a function solving a specified partial differential
equation inside a given region under prescribed boundary values (cf. Appendix P).
This problems applies to several cases, but it was originally posed for the Laplace
equation. Let the density filling a definite volume � be such that the corresponding
potential satisfies Poisson’s equation. If we find a function U which is regular at
infinity, continuous in the whole area together with its first derivative, and such that
it satisfies the equation:

9 George David Birkhoff (1884–1944): leading American mathematician, best known for what is
now called the ergodic theorem.
10 Lejeune Dirichlet (1805–1859), German mathematician, best known for the modern definition
of a function.
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∇2U =
{−4πGρ◦ inside the region�,

0 outside the region�,
(5.58)

then this function coincides with the potential. Actually, the theorem tells us that the
potential is a single solution of equation (5.58) satisfying all the above conditions.

Now consider again a solid sphere of radius r◦ and mass m, with constant density
ρ◦. Due to spherical symmetry, the potential depends on the radial coordinate only:
U = U(r). So, the Laplace equation assumes the following form11:

1

r2
∂

∂r

(
r2

∂Ue

∂r

)
= 0, (5.59)

whereUe is the potential in the outer region (r > r◦). By direct integration we obtain:

Ue(r) = −c1
r

+ c2. (5.60)

The constants in (5.60) are set by physical considerations: c1 = −Gm and c2 = 0,
as we want the potential to vanish at infinity.

The gravitational potential in the inner region should satisfy Poisson equation:

1

r2
∂

∂r

(
r2

∂Ui

∂r

)
= −4πGρ◦, (5.61)

which solves in:

Ui (r) = −2π

3
Gρ◦ r2 − c1

r
+ c2. (5.62)

Taking into account the boundary conditions given by the request of continuity for
both potential and force:

Ue

∣∣∣
r=r◦

= Ui

∣∣∣
r=r◦

,

dUe

dr

∣∣∣
r=r◦

= dUi

dr

∣∣∣
r=r◦

,

(5.63)

we obtain c1 = 0 from the second of (5.63), and from the first:

c2 = 3

2

Gm

r◦
. (5.64)

In summary, by this approach the gravitational potential of a homogeneous solid
sphere has the following form:

11 Cf. Appendix C for the expression of the Laplacian in spherical coordinates.
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Ui (r) = Gm

2r3◦

(
3r2◦ − r2

)
for r ≤ r◦,

Ue(r) = Gm

r
for r ≥ r◦,

(5.65)

in agreement with (5.56) and (5.57).

5.5 The Equation of Legendre

From the Laplace equation, which is the starting point of our analysis, we come to the
study of the so-called Legendre equation, which has particular solutions called spher-
ical harmonics. Their properties will be described both in the following subsection
and in Appendix O.3.

5.5.1 Spherical Harmonics

We now return to the Laplace equation (5.21) with the purpose of studying the
properties of an important class of solutions. Following J.C.Maxwell, we call a solid
spherical harmonic of degree n any solution Un(x, y, z) of the Laplace equation that
is positively homogeneous of degree n in x , y, and z. Recall that a function of k
variables, f (x1, x2, . . . , xk), is said to be positively homogeneous of degree α, with
α real, if at every point of the domain and for each positive value of the parameter t
it is:

f (t x1, t x2, . . . , t xk) = tα f (x1, x2, . . . , xk). (5.66)

For example, a simple homogeneous function of degree 1 in three variables takes
the form: f1 = c1x1 + c2x2 + c3x3; one of degree 2 can be: f2 = c1x21 + c2x22 +
c3x23 + c4x1x2 + c5x2x3 + c6x1x3. In a similar way, more complex homogeneous
functions of higher degrees can be constructed. For this whole class, the following
theorem due to Euler applies: a necessary and sufficient condition for the function
f (x1, x2, . . . , xk) to be positively homogeneous of degree α is that the relation:

x1
∂ f

∂x1
+ x2

∂ f

∂x2
+ · · · + xk

∂ f

∂xk
= α f (x1, x2, . . . , xk), (5.67)

is identically verified. By transforming the coordinates from the Cartesian system
O[x, y, z] into the spherical system O[r, θ, φ] (see Fig. 4.3), and by applying Euler’s
theorem, we verify that a solid spherical harmonic of degree n in the variables x , y,
and z, can always be written as:

Un(x, y, z) = rnUn(θ, φ). (5.68)
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The functionUn(θ, φ) is called surface harmonic. It represents the trend, as a function
of the angular variables, of the corresponding solid spherical harmonic at the surface
of the sphere of unit radius centered in the origin of the coordinate system. At any
other spherical surface of radius r and concentric to this one, the trend of the volume
harmonic remains the same, but the amplitude is controlled by the factor rn .

A theorem named after Lord Kelvin holds for solid spherical harmonics: if Un

is a solid spherical harmonic of degree n, then the function r−2n−1Un is also a
solid spherical harmonic, but of degree (−n − 1). First we want to prove that, if
m = −2n − 1, the function U = rmUn(x, y, z) satisfies the equation of Laplace. It
is:

∂U

∂x
= ∂

∂x

(
rmUn

)
= rm

∂Un

∂x
+ m x rm−2 Un, (5.69)

where we have used the relation:

∂r

∂x
= ∂

∂x
(x2 + y2 + z2)1/2 = x

r
. (5.70)

Moreover:

∂2U

∂x2
= rm

∂2Un

∂x2
+ 2x m rm−2 ∂Un

∂x
+ m rm−2 Un + m(m−2) x2 rm−4Un. (5.71)

Adding similar expressions for y and z, and using Euler’s theorem, we obtain:

∂2U

∂x2
+ ∂2U

∂y2
+ ∂2U

∂z2
= ∇2U = rm∇2Un + m(m + 2n+1) rm−2Un =

= m(m + 2n+1) rm−2Un, (5.72)

as, by assumption, ∇2Un = 0. The (5.72) shows that the condition ∇2U = 0 is sat-
isfied if m = −2n−1.

It remains to prove that the function U = r−2n−1Un is positively homogeneous of
degree (−n−1). To this purpose, we multiply the (5.69) by x and add the analogous
expressions for y and z. After the obvious reductions, we obtain:

x
∂U

∂x
+ y

∂U

∂y
+ z

∂U

∂z
= (−n−1) U, (5.73)

which, based on Euler’s theorem, is sufficient to prove the hypothesis.
We now seek the solution of the Laplace equation via an expansion in a series of

spherical harmonics. This requires finding the relationship between these functions
and Legendre polynomials.
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5.5.2 Legendre Equation and Spherical Harmonics

Theexplicit formof theLaplace equation in spherical coordinates is (seeAppendixC):

∇2U = ∂2U

∂r2
+ 2

r

∂U

∂r
+ 1

r2
∂2U

∂θ2
+ cot θ

r2
∂U

∂θ
+ 1

r2 sin2 θ

∂2U

∂φ2
= 0, (5.74)

or, multiplying by r2:

r2 ∇2U = r
∂2(rU)

∂r2
+ 1

sin θ

∂

∂θ

(
sin θ

∂U

∂θ

)
+ 1

sin2 θ

∂2U

∂φ2
= 0. (5.75)

Substituting into (5.75) the expression of a solid spherical harmonic Un given by
(5.68), we obtain the form of Laplace’s equation for surface harmonics:

n(n+1)Un + 1

sin θ

∂

∂θ

(
sin θ

∂Un

∂θ

)
+ 1

sin2 θ

∂2Un

∂φ2
= 0, (5.76)

or, if we place μ = cos θ , thus implicitly assuming that −1 ≤ μ ≤ +1:

n(n+1)Un + ∂

∂μ

[
(1 − μ2)

∂Un

∂μ

]
+ 1

1 − μ2

∂2Un

∂φ2
= 0. (5.77)

Note the difference between μ = cos θ and μ = cos γ , the latter being a function of
θ and φ (cf. 5.24). In order to avoid any ambiguity, in the following we will always
refer explicitly to the meaning of the variable μ.

Suppose now that the surface spherical harmonic of degree n allows for the sep-
aration of variables:

Un(θ, φ) = �(θ)�(φ) = �(μ)�(φ). (5.78)

Substituting in (5.77), we have:

n(n+1)(1−μ2) + 1−μ2

�

d

dμ

[
(1−μ2)

d�

dμ

]
+ 1

�

d2�

dφ2
= 0. (5.79)

The first two terms of (5.79) do not depend onφ, while the last one does not depend on
μ = cos θ . Since θ and φ are independent variables, the identity (5.79) is satisfied12

only if:

12 If x and y are independent variables, the identity f (x) + g(y) = 0 implies that the functions f
and g are separately equal to constants with the same modulus and opposite sign.
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n(n+1)(1 − μ2) + 1 − μ2

�

d

dμ

[
(1 − μ2)

d�

dμ

]
= m2, (5.80a)

1

�

d2�

dφ2
= −m2. (5.80b)

The sign of the non-negative constant m2 has been chosen in so that the function
�(φ) is periodic with period 2π . The integration of (5.80b) gives:

�(φ) = A cos(mφ) + B sin(mφ), (5.81)

where A and B are arbitrary constants.Multiplying (5.80a) by
�

(1 − μ2)
and recalling

that �(θ) = y(μ), it follows that the function �(θ) must satisfy the equation:

d

dμ

[
(1 − μ2)

dy(μ)

dμ

]
+
[
n(n+1) − m2

1 − μ2

]
y(μ) = 0, (5.82)

for all the values ofμ in the interval−1 ≤ μ ≤ +1 (external solutions haveno interest
here). Equation (5.82) is known by the name of associated Legendre equation. Its
solutions are indicated by the symbol ymn in order to emphasize that they contain
the two parameters n and m (note the order of these parameters with respect to their
position in the Legendre equation).

In conclusion, we can establish that, if �m
n (θ) is a solution of the associated

Legendre equation (5.82) in the interval 0 ≤ θ ≤ π (|μ| ≤ 1), the function:

Un(θ, φ) =
[
A cos(mφ) + B sin(mφ)

]
�m

n (θ), (5.83)

is a surface spherical harmonic of degree n, since it satisfies (5.77). Therefore:

Un(r, θ, φ) = rn
[
A cos(mφ) + B sin(mφ)

]
�m

n (θ), (5.84)

and, owing to the Kelvin theorem (Sect. 5.5.1):

U−n−1(r, θ, φ) = r−n−1
[
A cos(mφ) + B sin(mφ)

]
�m

n (θ), (5.85)

are both solid spherical harmonics of degree n and (−n−1) respectively.
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5.5.3 Particular Solution of the Legendre Equation:
the Associated Functions

To search for some particular solutions of the associated Legendre equation, it is
convenient to start with the function:

D(x, y, z) =
[
(x − x◦)2 + (y − y◦)2 + (z − z◦)2

]−1/2
, (5.86)

which actually satisfies the Laplace equation. One might prove this property directly,
but it would be a futile effort. It is enough to observe that the function D, being
the inverse of a distance, has the form of a Newtonian potential for a massive point.
Indicated with γ the angle13 between the vector radii r and r◦ of the points P(x, y, z)
and Q(x◦, y◦, z◦) respectively, the (5.86) writes as:

D(r, r◦, γ ) = (r2 − 2rr◦ cos γ + r2◦ )−1/2. (5.87)

Assuming that r < r◦ and remembering (5.41a), we have:

∇2D = ∇2

[ ∞∑
n=0

Pn(cos γ )
rn

rn+1◦

]
= 0, (5.88)

where Pn(cos γ ) is a Legendre polynomial of degree n. Expliciting the Laplace
operator, the (5.88) becomes:

∞∑
n=0

rn

rn+1◦

[
n(n+1)Pn(cos γ ) + 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
Pn(cos γ )

)
+

+ 1

sin2 θ

∂2

∂φ2
Pn(cos γ )

]
= 0. (5.89)

Since this power series must be identically null for all r < r◦, all of its coefficients
must also vanish:

n(n+1)Pn(cos γ ) + 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ
Pn(cos γ )

)
+

+ 1

sin2 θ

∂2

∂φ2
Pn(cos γ ) = 0. (5.90)

This equation is identical to (5.76), which proves that Pn(cos γ ) is a surface spherical
harmonic of integer degree.

13 Note that γ does not coincide with θ unless one of the two points defining the angle (together
with the origin of the reference system) does contain the z-axis.
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Let us nowconsider the special case γ = θ . In this instance, the third term in (5.90)
cancels, and the latter becomes identical to the associated Legendre equation with
m = 0. In conclusion, we have proved that the Legendre polynomials of argument
μ = cos θ form a family of special solutions of the homonym equation:

d

dμ

[
(1 − μ2)

d

dμ
y(μ)

]
+ n(n+1) y(μ) = 0, (5.91)

in the interval |μ| ≤ 1 and for non-negative values of the parameter n.
That said, we return to the associated Legendre equation (5.82). We will consider

only integer and non-negative values of the parameters n and m, with the further
condition that m ≤ n. Via the auxiliary function u(μ) defined by the position14:

y(μ) = (μ2 − 1)m/2u(μ), (5.92)

with some long but straightforward reductions, (5.82) becomes:

(1−μ2)
d2u

dμ2
− 2(m+1) μ

du

dμ
+ (n−m)(n+m+1) u = 0. (5.93)

Let us compare it with the equation obtained by differentiating15 m times the Leg-
endre equation (5.91):

(1 − μ2)
dm+2y

dμm+2
− 2(m+1)μ

dm+1y

dμm+1
+ (n − m)(n + m+1)

dm y

dμm
= 0. (5.94)

It is immediate to see that, if yn is a solution of (5.94), the function:

umn (μ) = dm

dμm
yn(μ), (5.95)

is solution of (5.93) and thus, through (5.92), the function:

ymn (μ) = (μ2 − 1)m/2 dm

dμm
yn(μ), (5.96)

14 For |μ| ≤ 1, the function y(μ) takes complex values for m odd.
15 Recall that, given two functions f (x) and g(x), the following formula due to Newton holds:

dn

dxn
( f g) =

n∑
k=0

(
n

k

)
f n−k−1gk+1 =

= g
dn f

dxn
+ n

dg

dx

dn−1 f

dxn−1 + · · · + n(n−1) · · · 3 · 2
(n−1)!

dn−1g

dxn−1

d f

dx
+ dng

dxn
f.

Also note that
dk(1 − μ2)

dμk
= 0 for k ≥ 3.
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is a solution of the associated Legendre equation. Since, due to our hypothesis on
the parameter n, Legendre polynomials are solutions of (5.93) in the interval −1 <

μ < +1, the functions:

Pm
n (μ) = (μ2 − 1)m/2 dm

dμm
Pn(μ), (5.97)

form, in the same interval, a family of solutions of the associated Legendre equation.
They are named associated Legendre functions.16

The nature of these functions becomes clear when the Legendre polynomial (5.97)
is represented by the Rodrigues17 formula:

Pm
n (μ) = (μ2 − 1)m/2

2nn!
dm+n

dμm+n
(μ2 − 1)n. (5.98)

It shows that, apart from the factor (μ2 − 1)m/2, Pm
n (μ) is a polynomial of degree

(n − m). It also helps to prove that the associated functions too satisfy orthogonality
conditions (similar to (O.45)):

∫ +1

−1
Pm
n (μ)Pm

n′ dμ = 0 n �= n′. (5.99)

For a demonstration see the Appendix O.
Following the literature, we define the following functions:

Tm
n (μ) = (−1)m/2Pm

n (μ) = (−1)m/2 (μ2 − 1)m/2

2nn!
dm+n

dμm+n
(μ2 − 1)n, (5.100)

named after Ferrers.18 These are real functions that retain all the considerations made
so far for the associated Legendre functions.

5.5.4 The Spherical Harmonics of Integer Degree

If n and 0 ≤ m ≤ n are two integers and the variable μ = cos θ spans the interval
−1 < μ < +1, the function:

16 Note that, for m = 0, the associated Legendre polynomial Pm
n (μ) becomes a simple Legendre

polynomial Pn(μ). Under these hypotheses, in fact, the (5.82) simplifies into (5.91).
17 Benjamin Olinde Rodrigues (1795–1851): French banker born from a Jewish-Portuguese family,
he was also a mathematician and a social reformer (he was closely associated to the Comte de
Saint-Simon).
18 Norman Macleod Ferrers (1829–1903): English mathematician who held high office at Cam-
bridge University.
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Um
n (θ, φ) =

[
A cos(mφ) + B sin(mφ)

]
Tm
n (cos θ), (5.101)

is a surface spherical harmonic of integer degree n. For each value of n we distinguish
three cases according to value assumed by the parameter m.

(a) Zonal harmonic: m = 0. In this case the function (5.101) becomes a constant

multiple of the Legendre coefficient Pn(cos θ). We show in Appendix O.3 that Pn(μ)

has n distinct roots between −1 and +1, i.e., Pn(cos θ) has n distinct roots between
0 and π , arranged symmetrically around θ = π/2. Consequently, on a unit sphere
centered in the origin of the reference system, the integer degree surface spherical
harmonic:

U 0
n (θ, φ) = A Pn(cos θ), (5.102)

cancels on n circleswith poles at the points θ = 0 and θ = π , arranged symmetrically
with respect to the great circle θ = π/2 (Fig. 5.7, panel a). For this reason,U 0

n (θ, φ)

is called a zonal harmonic. The point θ = 0 is named the pole and the diameter
through it is named the axis of the zonal harmonic.

(b)Tesseral harmonic: 0 < m < n. In this case, by replacing the expression (5.100)

of the Ferres functions in (5.101), we have:

Um
n (θ, φ) =

[
A cos(mφ) + B sin(mφ)

]
× sinm θ

dm+n

dμm+n
(μ2 − 1)n. (5.103)

Let us search for the roots of this function. The first multiplier vanishes when
tan(mφ) = −A/B, i.e., for m equally spaced great circles through the poles of the
unit sphere (Fig. 5.7); the planes of two consecutive circles form the constant angle
π/m. The second factor cancels m times at the poles. The third behaves like a zonal
harmonic of degree (n−m): it cancel on (n−m) minor circles with pole in θ = 0.
The name of tesseral19 harmonics for these functions descends from the appearance
of the areas on the surface of the unitary sphere framed by the zeros (Fig. 5.7b).

(c) Sectoral harmonic: m = n. Since the k-th derivative of a polynomial of degree

k is a constant, for m = n the expression (5.101) becomes:

Um
n (θ, φ) =

[
A cos(nφ) + B sin(nφ)

]
sinn θ. (5.104)

This function is canceled on n equispaced great circles through the poles of the unit
spherical surface (Fig. 5.7c) and for this reason takes the name of sectoral harmonic.

In summary, for every non-negative integer n, we have n + 1 surface spherical
harmonics of the type (5.101) broken down into:

19 From Latin “tessera”, meaning cubic body or die.
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Fig. 5.7 Roots of the spherical harmonics, a zonal, b tesseral, c sectoral

a. one zonal harmonic (m = 0),
b. n−1 tesseral harmonics (0 < m < n),
c. one sectoral harmonic (m = n).

The rationale of this distinction concerns the way in which each harmonic modulates
the surface of the unit sphere.

Following the current usage, we will sometimes use for (5.101) the compact
notation below:

Um
n (θ, φ) = cos mφ

sin mφ
Tm
n (cos θ). (5.105)

Appendix O.1 contains some useful theorems concerning harmonic functions. For
the integral representation, see p. 130 of [1].

We will use two important theorems presented in full in Appendix P. The first
states that each solution of the associated Legendre equation for an integer and
non-negative value of n and for |μ| < 1 (i.e., for any spherical harmonic of integer
degree) can always be written through a linear combination of the corresponding
zonal, tesseral, and sectoral harmonics.

The second theorem, known also as addition theorem (cf. Appendix O.4.3), states
that, if the expansion:

Pn(cos γ ) = A◦Pn(cos θ) +
n∑

k=1

[
Ak cos(kφ) + Bk sin(kφ)

]
T k
n (cos θ), (5.106)

is true, due to the previous theorem the coefficients Am and Bm are given by the
following expressions:

Am

Bm

}
= 2

(n−m)!
(n+m)! ×

{
cos(mφ′)
sin(mφ′) T

m
n (cos θ ′) . (5.107)
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Fig. 5.8 Potential through spherical harmonics. The body of surface S can be either internal to the
spherical surface of radius r centered on the origin O of the reference system and containing the
point P on which the potential is to be calculated, or external, or partly internal (left) and partly
external (right). It is obvious that this division depends on the choice of the reference system

5.6 Expansion of the Potential through Spherical
Harmonics

We now prove that, whatever the mass distribution ρ(r ′, θ ′, φ′), the potential U in
the outer point P(r, θ, φ) can be always written in the form:

U(P) =
∞∑
i=0

r i Yi (θ, φ) +
∞∑
j=0

1

r j+1
Z j (θ, φ), (5.108)

whereYi and Z j are surface spherical harmonics of integer degree i and j respectively.
Let us introduce the surface S of a sphere centered in the origin O of the reference

systemand containing P (Fig. 5.8). The potential in P , produced by themass element:

dm = ρ(r ′, θ ′, φ′) r ′2 sin θ ′ dr ′ dθ ′ dφ′, (5.109)

placed in Q(r ′, θ ′, φ′), is:

dU = G
dm

δ
= G

ρ(r ′, θ ′, φ′) r ′2 sin θ ′ dr ′ dθ ′ dφ′

(r2 − 2rr ′ cos γ + r ′2)1/2
, (5.110)

where, as usual, γ is the angle between the vector radii of the points Q and P .
Through (5.41a) we readily have:
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dU = G ρ(r ′, θ ′, φ′) r ′2 sin θ ′ dr ′ dθ ′ dφ′×

×

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

r

∞∑
k=0

Pk(cos γ )
(r ′

r

)k
if r ′ < r,

1

r ′

∞∑
k=0

Pk(cos γ )
( r
r ′
)k

if r < r ′.

(5.111)

The dual form depends on the fact that P can lie internally or externally20 to the
surface of the sphere S. In conclusion, the overall potential in P is the integral of the
elementary contributions (5.111) extended to the whole volume � occupied by the
material body. Remembering that U is expressed by an absolutely convergent series,
we have:

U(r, θ, φ) = G
∞∑
k=0

rk
∫∫∫

�

ρ(r ′, θ ′, φ′)
r ′k−1 Pk(cos γ ) sin θ ′ dr ′ dθ ′ dφ′ +

+ G
∞∑
k=0

1

rk+1

∫∫∫
�

ρ(r ′, θ ′, φ′) r ′k+2 Pk(cos γ ) sin θ ′ dr ′ dθ ′ dφ′. (5.112)

If ρ ≡ 0 outside the spherical surface S centered at the origin and containing P
(r > r ′), the first term at the the right-hand side of (5.112) vanishes; if instead ρ ≡ 0
inside S (i.e., r < r ′), it is the second term to vanish. Substituting to the Legendre
coefficients, Pk(cos, γ ), the expressions given by the addition theorem (O.90), we
obtain:

U(r, θ,φ) = G
∞∑
k=0

rk
[
A◦,k Pk(cos θ) +

+
k∑

m=1

(
Am,k cos(mφ) + Bm,k sin(mφ)

)
Tm
k (cos θ)

]
+

+ G
∞∑
k=0

1

rk+1

[
A′◦,k Pk(cos θ) +

+
k∑

m=1

(
A′

m,k cos(mφ) + B ′
m,k sin(mφ)

)
Tm
k (cos θ)

]
. (5.113)

The constants are:

20 Note that, since the origin of the reference system is arbitrarily chosen, the spherical surface
discriminating between the two cases can also be changed at will.
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A◦,k =
∫∫∫

�

1

r ′k−1 Pk(cos θ ′) dv′, (5.114a)

A′
◦,k =

∫∫∫
�

r ′k+2Pk(cos θ ′) dv′, (5.114b)

Am,k =
∫∫∫

�

2
(k − m)!
(k + m)! cos(mφ′)

1

r ′k−1 T
m
k (cos θ ′) dv′, (5.114c)

A′
m,k =

∫∫∫
�

2
(k − m)!
(k + m)! cos(mφ′) r ′k+2 Tm

k (cos θ ′) dv′, (5.114d)

Bm,k =
∫∫∫

�

2
(k − m)!
(k + m)! sin(mφ′)

1

r ′k−1 T
m
k (cos θ ′) dv′, (5.114e)

B ′
m,k =

∫∫∫
�

2
(k − m)!
(k + m)! sin(mφ′) r ′k+2 Tm

k (cos θ ′) dv′, (5.114f)

where we have placed:

dv′ = ρ(r ′, θ ′, φ′) sin θ ′ dr ′ dθ ′ dφ′. (5.115)

Using the expression (O.76) of a surface spherical harmonic of integer degree, it is
immediate to verify that (5.113) coincides with (5.108), which is what we wanted to
prove.
Note 1. The constant A′◦,◦ is proportional to the total mass m of the body generating
the potential. Indeed, from the (5.114a) and (5.99), remembering that P0(μ) = 1, it
is:

A′◦,◦ =
∫∫∫

�

ρ(r ′θ ′, φ′) r ′2 sin θ ′ dr ′ dθ ′ dφ′ =
∫∫∫

�

dm = m. (5.116)

Note 2. We want to emphasize again the fact that if all the mass m producing the
potential is enclosed within the surface of the sphere concentric to the origin of the
reference system and containing P , in other words if ρ(r ′, θ ′, φ′) = 0 for r ′ > r , the
potential in P is given by:

U(r, θ, φ) =G
∞∑
k=0

1

rk+1

[
A′◦,k Pk(cos θ) +

+
k∑

m=1

(
A′

m,k cos(mφ) + B ′
m,k sin(mφ)

)
Tm
k (cos θ)

]
. (5.117)

If the contrary is true, i.e., if ρ(r ′, θ ′, φ′) = 0 for r ′ < r , we have instead:
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U(r, θ, φ) =G
∞∑
k=0

rk
[
A◦,k Pk(cos θ) +

+
k∑

m=1

(
Am,k cos(mφ) + Bm,k sin(mφ)

)
Tm
k (cos θ)

]
. (5.118)

Note 3. If themass responsible of the potential is distributedwith rotational symmetry
around the z-axis, that is, if the densityρ does not depend onφ′, the expression (5.113)
simplifies in:

U(r, θ) = G
∞∑
k=0

[
A◦,k r

k + A′
◦,k

r k+1

]
Pk(cos θ). (5.119)

In fact, the coefficients Am,k , A′
m,k , Bm,k , and B ′

m,k , of the tesseral and sectoral
harmonics, both in Yk and in Zk , are of the type:

const ×
∫∫ [∫ 2π

0
ρ(r ′, θ ′, φ′)

{
sin(mφ′)
cos(mφ′) dφ′

]
×

×
{
r ′ k+2

r ′ 1−k T
m
k (cos θ ′) sin θ ′ dr ′ dθ ′ . (5.120)

If ρ is independent of φ′, the integrals:

∫ 2π

0

{
sin(mφ′)
cos(mφ′) dφ′ = 1

m

{− cos(mφ′)
sin(mφ′)

∣∣∣∣
2π

0

, (5.121)

vanish when m �= 0. Thus, the coefficients of all harmonics but the zonal ones are
zero.
Note 4. If, in addition to the hypothesis of Note 3, the mass distribution is also
symmetrical with respect to the plane containing the x and y-axes, i.e., if:

ρ(r ′, θ ′, φ′) = ρ(r ′, θ ′) = ρ(r ′, π − θ ′), (5.122)

the coefficients with odd index in (5.119) are zero, and the expression of the potential
reduces further to:

U(r, θ) = G
∞∑
k=0

[
A◦,2k r

2k + A′
◦,2k

r2k+1

]
P2k(cos θ). (5.123)

The proof is immediate. Just remember that the Legendre coefficients of odd index
are antisymmetric relative to θ = π/2.

Once again we want to draw the attention to the fact that, in order to exploit
the properties of this and the previous Note, it is not enough that symmetries exist
with respect to an axis and a plane orthogonal to it. An appropriate choice of the
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coordinate system is also required. The symmetry axis must contain the z-axis, and
the symmetry plane both the x and y-axes. It is obvious that, under these hypotheses,
the origin of the system coincides with the barycenter of mass distribution, since the
density ρ ends up depending exclusively on the modulus of z.
Note 5. It can be proved that the operator:

O = �
∂

∂x
+ m

∂

∂y
+ n

∂

∂z
, (5.124)

where �, m, and n, are constants, allows us to write:

OU = Y◦ + r Y1 + r2Y2 + · · · + Z1

r2
+ Z2

r3
+ · · · (5.125)

5.7 Potential of a Thin Spherical Layer

As an application of the results of the previous section, we calculate here the potential
due to a thin spherical layer� of radius r◦ and surface density σ(θ ′, φ′).We introduce
a spherical coordinate system with origin in the geometric center O of � (which in
this case does not necessarily coincide with the barycenter as the surface density
is not required to be constant). Based on (5.108), the potential at an external point
P(r, θ, φ) is given by:

U = G
∞∑
k=0

Zk(θ, φ)

rk+1
(r > r◦), (5.126)

where Zk is an integer degree spherical harmonic of degree k:

Zk(θ, φ) = A◦,k Pk(cos θ) +
k∑

m=1

Am,k cos(mφ)

Bm,k sin(mφ)
Tm
k (cos θ). (5.127)

The constants Am,k and Bm,k are of the type:

Am,k

Bm,k

}
=const × rk+2

◦

∫∫
�

σ(θ ′, φ′) ×

×
{
cos(mφ′)
sin(mφ′) T

m
k (cos θ ′) sin θ ′ dθ ′ dφ′, (5.128)

since the integration with respect to r ′, constant and equal to r◦, is suppressed. By
factoring rk+2◦ , the (5.126) becomes:
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U = G
∞∑
k=0

rk+2◦
rk+1

Yk(θ, φ) (r > r◦), (5.129)

with Zk(θ, φ) = rk+2◦ Yk(θ, φ). By the same procedure it is easy to demonstrate that,
if P is an internal point, then:

U = G
∞∑
k=0

rk

rk−1◦
Yk(θ, φ) (r < r◦). (5.130)

We now verify that, if the layer is homogeneous (σ = σ◦), (5.129) and (5.130) are
identical to (5.50) and (5.51) respectively (outer and inner potentials of a homoge-
neous spherical layer). For the hypothesis made, the present case falls into those
contemplated by the Note 4 at Sect. 5.6, so:

U = G
∞∑
k=0

r2k+2◦
r2k+1

A◦,2k P2k(cos θ) if r > r◦,

U = G
∞∑
k=0

r2k

r2k−1◦
A◦,2k P2k(cos θ) if r < r◦,

(5.131)

where:

A◦,2k = σ◦
∫∫

�

P2k(cos θ ′) sin θ ′ dθ ′ dφ′ = 2π σ◦
∫ +1

−1
P2k(μ

′) dμ′, (5.132)

andμ′ = cos θ ′. Remembering that P0(μ′) ≡ 1, for the orthogonality of theLegendre
polynomials it is:

∫ +1

−1
P2k(μ

′) dμ′ =
∫ +1

−1
P2k(μ

′) P0(μ′) dμ′ =
{
2 if k = 0,
0 if k �= 0,

(5.133)

and thus all the Legendre coefficients A◦,k are zero with the exception of A◦,◦ =
4πσ◦. This proves the thesis for the external points. The procedure for the internal
points is analogous.

5.8 Potential of a Homogeneous Spheroid in an External
Point

Here we call spheroid a body that differs little from a sphere (Fig. 5.9; note that this
body shares the same name of the revolution or rotational ellipsoids of Fig. 5.13).
The equation of its surface can be put in the form:
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Fig. 5.9 Potential of a
homogeneous spheroid. Note
the O is the center of the
sphere of radius r◦ defined
by the (5.137) and it is not
necessarily the barycenter of
the spheroid

r = r◦
[
1 + α f (θ, φ)

]
, (5.134)

where r◦ is an average radius and α is a parameter whose magnitude establishes
the deviation from the sphere. In the following we assume that α is so small that
its square can be neglected. We will show that, if the spheroid is homogeneous
(ρ(r, θ, φ) = ρ◦), its external potential is given by the sum of that of the solid sphere
of radius r◦ with the potential of the thin spherical layer of equal radius and surface
density:

σ = ρ◦r◦α f (θ, φ). (5.135)

The potential in P(r, θ, φ) is:

Ue(r, θ, φ) = G
∫ 2π

0

∫ π

0

∫ r1

0
ρ◦

r ′2

δ1
sin θ ′ dr ′ dθ ′ dφ′, (5.136)

where δ1 is the distance between P and the volume element of the spheroid centered
in Q′(r ′, θ ′, φ′). The upper limit of the integral in r ′, according to (5.134), is:

r1 = r◦
[
1 + α f (θ ′, φ′)

]
. (5.137)

Placing μ′ = cos θ ′, we break down the integral (5.136) in the sum of two terms:
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Ue(r, θ, φ) = U1(r, θ, φ) + U2(r, θ, φ) =
= G

∫ 2π

0

∫ +1

−1

∫ r◦

0
ρ◦

r ′2

δ1
dr ′ dμ′ dφ′+

+G
∫ 2π

0

∫ +1

−1

∫ r1

r◦
ρ◦

r ′2

δ1
dr ′ dμ′ dφ′. (5.138)

The first term is the potential of a homogeneous solid sphere of radius r◦. If P is
external to the spheroid, that is, if r > r1, which is the case of (5.41b), then:

δ−1
1 =

∞∑
k=0

r ′k

r k+1
Pk(cos γ ). (5.139)

It follows that:

U2 = G
∫ 2π

0

∫ +1

−1

∫ r1

r◦
ρ◦ r ′2

[ ∞∑
k=0

r ′k

r k+1
Pk(cos γ )

]
dr ′ dμ′ dφ′, (5.140)

which can be integrated with respect to r ′:

U2 = G
∫ 2π

0

∫ +1

−1
ρ◦

[ ∞∑
k=0

1

k + 3

rk+3
1 − rk+3◦

rk+1
Pk(cos γ )

]
dμ′ dφ′. (5.141)

Expanding rk+3
1 = rk+3◦

[
1 + α f (θ ′, φ′)

]k+3
in powers of α and truncating at the

first order (which is allowed by our assumption that α is so small that α2 can be
neglected), it is:

rk+3
1 = rk+3

◦
[
1 + α (k + 3) f (θ ′, φ′)

]
, (5.142)

with which:

U2 = G
∫ 2π

0

∫ +1

−1
ρ◦

[ ∞∑
k=0

rk+3◦
rk+1

α f (θ ′, φ′) Pk(cos γ )

]
dμ′ dφ′. (5.143)

Then, by placing σ = ρ◦ r◦ α f (θ ′, φ′), we obtain:

U2 = G
∫ 2π

0

∫ +1

−1
σ

[ ∞∑
k=0

rk◦
rk+1

Pk(cos γ )

]
r2◦ dμ′ dφ′ =

= G
∫ 2π

0

∫ +1

−1

σ r2◦ dμ′ dφ′

δ
, (5.144)
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where δ is the distance of P from the point Q(r◦, θ ′, φ′) belonging to the surface
of the sphere of radius r◦ (see Fig. 5.9). The expression of U2 is that of the external
potential of a thin spherical layer of radius r◦ and surface density σ , which is what
we wanted to prove for an external point. Its extension to an internal point is now
obvious.

The integral appearing in (5.144) is not trivial. However, if f (θ, φ) in (5.135) is
expandable in a series of spherical harmonics:

f (θ ′, φ′) =
∞∑
n=0

Yn(θ
′, φ′), (5.145)

the integration follows in a simpler way owing to the orthogonality of spherical
harmonics themselves.21 Using the addition theorem (Sect. O.4.3) and (O.88) in
particular, we can then prove that the external potential of the spheroid is given by
following expression:

Ue(r, θ, φ) = 4π

3
G ρ◦

r3◦
r

+

+ 4π G ρ◦ r2◦ α

∞∑
n=0

1

2n+1

(r◦
r

)n+1
Yn(θ, φ). (5.146)

We want to prove now that the spheroid delimited by:

r = r◦
[
1 + α

∞∑
n=0

Yn(θ, φ)
]
, (5.147)

has a mass:

M = 4π

3
ρ◦ r3◦

[
1 + 3α Y◦

]
. (5.148)

In fact, for the orthogonality of surface harmonics (see footnote 21 in this chapter),
it is:

M =
∫ 2π

0

∫ +1

−1

∫ r

0
ρ◦ r ′2 dr ′ dμ′ dφ′ =

∫ 2π

0

∫ +1

−1

1

3
ρ◦ r3 dμ′ dφ′ =

≈
∫ 2π

0

∫ +1

−1

1

3
ρ◦ r3◦

[
1 + 3α

∞∑
n=0

Yn(θ, φ)
]
dμ′ dφ′ =

=4π

3
ρ◦ r3◦

[
1 + 3α Y◦

]
, (5.149)

21 As usual, to exploit this property it is enough to introduce P0(μ) = 1 in the integral.
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to the first order in α; that is:
[
1 + α

∞∑
n=0

Yn(θ, φ)
]3 ≈

[
1 + 3α

∞∑
n=0

Yn(θ, φ)
]
. This

result allows us to rewrite the expression (5.146) in the following way22:

Ue(r, θ, φ) = 4π

3
G ρ◦

r3◦
r

+ 4π G ρ◦ r2◦
(r◦
r

)
αY0 +

+ 4π G ρ◦ r2◦ α

∞∑
n=1

1

2n+1

(r◦
r

)n+1
Yn(θ, φ) =

= G

[
M

r
+ 4π ρ◦ r2◦ α

∞∑
n=1

(r◦
r

)n+1 Yn(θ, φ)

2n+1

]
. (5.150)

It can be proven that the previous expressions lose the term Y1(θ, φ) if the origin of
the reference system contains the center of gravity (see also Sect. 5.11).

As an application of the previous formula, we consider an ellipsoid of revolution
with axes a = b and c:

x2 + y2

a2
+ z2

c2
= 1. (5.151)

We place a = c(1 + α). If α is such that its powers higher than the first are negligible,
it can be proven23 that:

r1 = c (1 + α sin2 θ). (5.152)

Recalling the expression (5.40c) of the Legendre coefficient P2(cos θ), it results:

r1 = c

[
1 + α

(
2

3
− 2

3
P2(cos θ)

)]
. (5.153)

The comparison of this with the (5.147) gives as r◦ = c, Y◦ = 2

3
, Y1 = 0, Y2 =

−2

3
P2(cos θ). Substituting in (5.150), it is:

22 Note that at the first order it is:
α

1 + 2α
= α(1 − 2α)

1 − 4α2 = α − 2α2

1 − 4α2 = α.

23 From (5.151), with a = c(1 + α):

1 = r2
(

sin2 θ

c2(1 + α)2
+ cos2 θ

c2

)
≈ r2

(
1 + 2α cos2 θ

c2(1 + 2α)

)
,

by ignoring the terms in α2, and thus:

r2 ≈ c2(1 + 2α)

1 + 2α cos2 θ
 c2(1 + 2α)(1 − 2α cos2 θ)

1 − 4α2 cos4 θ
 c2(1 + 2α sin2 θ) 

≈ c2(1 + 2α sin2 θ + α2 sin4 θ) ≈ c2(1 + α sin2 θ)2,

where the addition of the term (α2 sin4 θ) is justified by the negligibility of α2.
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Ue(r, θ) = G

[
M

r
− 8π

15
ρ◦ c2 α

(c
r

)3
P2(cos θ)

]
=

≈ G

[
M

r
− 2

5
α c2

M

r3
P2(cos θ)

]
=

= G
M

r

[
1 − 2

5
α c2

1

r2
P2(cos θ)

]
, (5.154)

where M = 4π

3
ρ◦c3

(
1 + 2α

)
is the total mass of the ellipsoid approximated by

(5.152).

5.9 Potential of a Homogeneous Ellipsoid in an Inner Point

We now calculate the potential generated by a homogeneous ellipsoid. In the general
case it cannot be expressed through elementary functions. We start by calculating the
potential at a point internal to a homogeneous ellipsoidal shell with constant density
ρ (Fig. 5.10). This is a figure limited by two triaxial ellipsoids of semi-axes a, b, c
(outer surface) and pa, pb, pc (inner surface as p < 1). Since the internal potential
is constant (Newton’s theorem, Sect. 5.4, we simply calculate its value at the central
point O .

Consider a cone with the apex in O , which subtends a solid angle dω and whose
axis intercepts the surfaces of the figure at distances pr and r from O (Fig. 5.11).
The potential in O due to the volume element of the homogeneous ellipsoidal shell
cut by the cone is:

dUi (O) = G
∫ r

pr
ρ r2 dω

dr

r
= 1

2
G ρ (1 − p2) r2 dω, (5.155)

and thus the total potential is:

Fig. 5.10 Homogeneous
triaxial ellipsoid
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Fig. 5.11 Ellipsoidal shell

Ui (O) = 1

2
G ρ (1 − p2)

∫
sup

r2 dω. (5.156)

The integration must be carried out on the external surface of the figure, whose
equation is:

x2

a2
+ y2

b2
+ z2

c2
= 1. (5.157)

Let (r�, rm, rn) be the coordinates of a point of the external surface in an generic
reference system centered in O; �,m, n represent, as usual, direction cosines: � =
sin θ cosφ, m = sin θ sin φ, and n = cos θ . Then:

r2
(

�2

a2
+ m2

b2
+ n2

c2

)
= 1. (5.158)

Furthermore, since the integrand in (5.156) is symmetric with respect to each of
the axes, its integral will be equal to eight times that calculated on a single octant.
Therefore:

Ui (O) = 1

2
G ρ (1 − p2)

∫
sup

(
�2

a2
+ m2

b2
+ n2

c2

)−1

dω =

= 4G ρ (1 − p2)
∫ π

2

0

∫ π
2

0

sin θ dθ dφ

sin2 θ

(
cos2 φ

a2
+ sin2 φ

b2

)
+ cos2 θ

c2

, (5.159)

and, placing tan φ = t and using
1

cos2 φ
= tan2 φ + 1:
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Ui (O) = 4G ρ (1 − p2)×

×
∫ π

2

0

∫ ∞

0

sin θ dθ dt

sin2 θ
a2

+ cos2 θ
c2

+
(
sin2 θ
b2

+ cos2 θ
c2

)
t2

. (5.160)

Let us place:

A′ =
√
sin2 θ

a2
+ cos2 θ

c2
, (5.161a)

B ′ =
√
sin2 θ

b2
+ cos2 θ

c2
. (5.161b)

The inner integral in (5.160) now is:

∫ ∞

0

dt

A′2 + B ′2t2
= 1

A′B ′ arctan
(
B ′

A′ t
)∣∣∣∣

∞

0

= 1

2

π

A′B ′ , (5.162)

then:

Ui (O) = 2π G ρ (1 − p2)×

×
∫ π/2

0

{(
sin2 θ

a2
+ cos2 θ

c2

)(
sin2 θ

b2
+ cos2 θ

c2

)}−1/2

sin θ dθ =

= 2π G ρ (1 − p2)
∫ π/2

0

sin θdθ

A′B ′ . (5.163)

By setting u = c2 tan2 θ we have:

cos2 θ = c2

c2 + u,
, sin2 θ = u

(c2 + u)
, (5.164a)

sin θdθ = cos θ sin2 θ

2u
du = c

2(c2 + u)3/2
du, (5.164b)

and the functions A′ and B ′ are:

A′ = cos θ

ac

√
a2 + u, (5.165a)

B ′ = cos θ

bc

√
b2 + u. (5.165b)

Substituting it in (5.163) we finally obtain the potential of the ellipsoidal layer in the
central point O:

Ui (O) = π G ρ (1 − p2) abc × I, (5.166)
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Fig. 5.12 Homogeneous
solid ellipsoid

where:

I =
∫ ∞

0

du

�
, (5.167a)

�2 = (a2 + u)(b2 + u)(c2 + u). (5.167b)

Placing p = 0, we obtain the potential at the center of a solid and homogeneous
ellipsoid.

Now we want to calculate the force exerted at a point P(x, y, z) inside a homo-
geneous ellipsoid. Since the shell having the internal surface passing through P
provides a null contribution to the force in P (since its contribution to the potential
is constant), it is sufficient to calculate the force exerted by the ellipsoid containing
P . To this end we adopt the following strategy. We consider an infinitesimal cone
that has the vertex in P and its axis directed towards a point Q also belonging to the
surface of the ellipsoid (Fig. 5.12). To calculate the total potential in P we will just
need to integrate the elementary contributions by the part of the ellipsoid contained
within the cone, allowing Q to vary across the entire outer surface.

Let (�,m, n) be the direction cosines of
−→
PQ, with which the coordinates of Q

are x + �r , y + mr , and z + nr . The requirement that P and Q are on the outer
surface of the ellipsoid is accomplished by replacing the corresponding coordinates
in the (5.157). From these, by subtraction, we have:

r2
(

�2

a2
+ m2

b2
+ n2

c2

)
+ 2r

(
�x

a2
+ my

b2
+ nz

c2

)
= 0. (5.168)

The force in P due to the mass within the conical element of vertex P , axis
−→
PQ, and

solid angle dω, has the modulus:

|d f (P)| = G ρ dω

∫ r

0
dr = G ρ r dω, (5.169)
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and components:

G ρ �r dω, G ρ mr dω, G ρ nr dω. (5.170)

Each component of the total force will therefore result from the integration of the
elementary contributions for all the possible values of ω on the half-space limited by
the plane tangent in P and containing the ellipsoid (in fact, each line through P has
only one real intersection with the boundary surface of the ellipsoid).

Let us obtain the component of the total force along the z-axis:

fz = 1

2
G ρ

∫
sup

nr dω =

= −1

2
G ρ

∫
sup

2n

(
�x

a2
+ my

b2
+ nz

c2

)(
�2

a2
+ m2

b2
+ n2

c2

)−1

dω, (5.171)

where we used the relation (5.168). For reasons of symmetry, the terms in nl and nm
give a null contribution to the integral in (5.171); for instance, for each value of nl
there will be a corresponding value with opposite sign. So, the (5.171) reduces to:

fz = −G ρ

∫
sup

n2z

c2

(
�2

a2
+ m2

b2
+ n2

c2

)−1

dω = −G ρ C z, (5.172)

where we used the result of integration by φ given by (5.162) and the expressions
(5.164a) and (5.164b):

C = 1

c2

∫
sup

n2
(

�2

a2
+ m2

b2
+ n2

c2

)−1

dω = 4π

c2

∫ π/2

0

sin θ cos2 θdθ

A′B ′ =

= 2πabc
∫ ∞

0

du

(c2 + u)
√

(a2 + u)(b2 + u)(c2 + u)
=

= 2πabc
∫ ∞

0

du

(c2 + u)�
. (5.173)

Analogous expressions are obtained for the other two components along x and y, in
which the integrals A and B will appear similar to C . Given the linear dependence
of each component of the force from the corresponding coordinate:

fx = −2x Ã ,

fy = −2y B̃ , (5.174)

fz = −2zC̃ ,

where:
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⎛
⎝ Ã

B̃
C̃

⎞
⎠ = πGρ a b c

∫ ∞

0

du

�
×
⎛
⎝ (a2 + u)−1

(b2 + u)−1

(c2 + u)−1

⎞
⎠ , (5.175)

we are then able to write the the element of the potential as:

dU = fxdx + fydy + fzdz = −2( Ãxdx + B̃ ydy + C̃zdz). (5.176)

After integrating, the total potential of the ellipsoid in the inner point P is:

Ui (x, y, z) = U(O) −
(
Ãx2 + B̃ y2 + C̃z2

)
, (5.177)

where, in correspondence to the limits of the integral, the integration constantUi (O)

is equal to the potential at the center (x = y = z = 0) of the homogeneous ellipsoid,
defined by (5.166) for p = 0.

In conclusion, the potential of the homogeneous ellipsoid in any inner point is:

Ui (x, y, z) = Gπ ρ abc
∫ ∞

0

{
1 − x2

a2 + u
− y2

b2 + u
− z2

c2 + u

}
du

�
, (5.178)

or, remembering (5.167a) and (5.167b):

Ui (x, y, z) = Gπ ρ abc

{
I + x2

a

∂ I

∂a
+ y2

b

∂ I

∂b
+ z2

c

∂ I

∂c

}
. (5.179)

From (5.172) we easily deduce two relations among A, B, and C :

A + B + C =
∫
sup

dω = 4π, (5.180a)

A a2 + B b2 + C c2 =
∫
sup

(
�2

a2
+ m2

b2
+ n2

c2

)−1

dω. (5.180b)

Note that A, B, and C depend only on the axial ratios.
In the general case, the integrals (5.180a) and (5.180b) can be solved in terms

of elliptical integrals. If, however, two of the axes are equal, that is, if the ellipsoid
reduces to a spheroid (a figure of revolution in this case), the integration becomes
possible in terms of simple functions. Suppose that a = b, with which A = B. From
(5.180b) we obtain:
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Fig. 5.13 Oblate (a) and prolate (b) spheroids. The oblate spheroid looks like a sphere equally
flattened at the poles; its extreme shape is that of a disc or lentil. The prolate spheroid looks like a
rugby ball or, in the extreme case, a cigar

2A a2 + C c2 =
∫
sup

(
�2 + m2

a2
+ n2

c2

)−1

dω =

=
∫ π

0

∫ π/2

0

(
sin2 θ

a2
+ cos2 θ

c2

)−1

sin θ dθ dφ =

= 2π
∫ +1

−1

{
1

a2
+
(
1

c2
− 1

a2

)
u2
}−1

du, (5.181)

where we have placed u = cos θ . We distinguish two cases (Fig. 5.13).
Oblate spheroid, or a > c (since we chose to put a = b):

2Aa2 + Cc2 = 4πa2c√
a2 − c2

arctan

√
a2

c2
− 1 =

= 4πa2
√
1 − e2

e
arctan

e√
1 − e2

, (5.182)

where e is the ellipticity
(
e2 = 1 − c2/a2

)
.

Prolate spheroid, or a < c:

2A a2 + C c2 = π a2c2

c2 − a2
ln

{
c + √

c2 − a2

c − √
c2 − a2

}
= π a2

e2
ln

1 + e

1 − e
, (5.183)

where e2 = 1 − a2/c2.
These solutions combine with (5.180a) to provide the values of A and C, that is,

what is needed to obtain the potential.
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5.10 Potential of a Homogeneous Ellipsoid in an External
Point

We want to find the expression of the potential of a homogeneous ellipsoid E with
semi-axes a, b, c (5.157) in an outer point P(x, y, z) satisfying the condition:

x2

a2
+ y2

b2
+ z2

c2
> 1. (5.184)

We say that an ellipsoid E ′ is confocal to E if the foci of their main cross-sections
coincide (Fig. 5.14); hence: a′2 − a2 = b′2 − b2 = c′2 − c2 = s, where s is the root
of the confocal ellipsoid equation:

x2

a2 + s
+ y2

b2 + s
+ z2

c2 + s
= 1. (5.185)

We take E ′ in such away that it contains the point P (therefore s > 0) and assume that
it has the same constant density ρ as E . Denote the projections of the gravitational
forces exerted by E ′ on P as f ′

x , f
′
y , f

′
z .

To obtain the outer potential of the ellipsoid we can use the Laplace-Maclaurin
theorem24: homogeneous confocal ellipsoids attract an outer point with identical
forces proportional to their masses:

Fig. 5.14 Cross sections of
confocal ellipsoids by a
plane containing two
principal axes

24 In the literature this theorem has two different formulations: Laplace theorem for the forces and
Maclaurin theorem for the potential.
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fx
f ′
x

= M

M ′ = abc

a′b′c′ . (5.186)

Since the point P for the ellipsoid E ′ is located at its surface,we canuse the expression
for the inner potential (because P is the limiting cases of the inner point for E ′). So,
expressing the projection f ′

x of the force using (5.172), we obtain:

fx = abc

a′b′c′

(
−2πGρa′b′c′ x

∫ ∞

0

du

(a′2 + u)�′

)
, (5.187)

where:

�′(u) =
√

(a′2 + u)(b′2 + u)(c′2 + u) =
=
√

(a2 + s + u)(b2 + s + u)(c2 + s + u) = �(s + u). (5.188)

The (5.187) can be rewritten by introducing the new variable u′ = s + u:

fx = −2πGρabc x
∫ ∞

s

du′

(a2 + u′)�(u′)
. (5.189)

By repeating the same considerations for the inner potential, by analogy with (5.178)
and omitting the primes, we obtain the expression for the outer potential of the
ellipsoid:

Ue(x, y, z) = Gπ ρ abc
∫ ∞

s

{
1 − x2

a2 + u
− y2

b2 + u
− z2

c2 + u

}
du

�
, (5.190)

where � is defined by the expression (5.167b). Thus, the projection of the gravita-
tional force and the potential of the ellipsoid in an outer point differ from the inner
case in the lower limit of the integral only.

5.11 The Explicit Form of the Potential in an External Point

The potential of a generic body in an external point P(r, θ, φ) is (cf. (5.111)):

Ue(r, θ, φ) = G
∫∫∫

M

dM

r

[ ∞∑
k=0

(
r ′

r

)k

Pk(cos γ )

]
, (5.191)

with dM = ρ r ′2 sin θ ′ dr ′ dθ ′ dφ′. By expliciting the Legendre coefficients up to
the second degree, we obtain:
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Ue(r, θ, φ) = G
M

r
+ G

r2

∫∫∫
M
r ′ cos γ dM+

+ G

2r3

∫∫∫
M
r ′2
(
3 cos2 γ − 1

)
dM+

+ G
∫∫∫

M

dM

r

[ ∞∑
k=3

(
r ′

r

)k

Pk(cos γ )

]
. (5.192)

We now assume that the center of gravity of the body contains the origin of the
coordinate system O , and indicate with �, m, and n, the direction cosines of

−→
OP .

Hence:
r ′ cos γ = �x ′ + my′ + nz′, (5.193)

where x ′, y′, and z′, are the Cartesian coordinates of the point Q(r ′, θ ′, φ′), and thus,
by definition, of the barycenter:

∫∫∫
M
r ′ cosγ dM =

∫∫∫
M

(
�x ′ + my′ + nz′

)
dM =

=�

∫∫∫
M
x ′ dM + m

∫∫∫
M
y′ dM + n

∫∫∫
M
z′ dM = 0. (5.194)

Therefore, the second term at the second member of (5.192) is zero.25 The integral
of the third term is:

r ′2(3 cos2 γ − 1) = 3(�x ′ + my′ + nz′)2 − (x ′2 + y′2 + z′2) =
= 3(�2x ′2 + m2y′2 + n2z′2) − (x ′2 + y′2 + z′2)+

+ 6(�m x ′y′ + �n x ′z′ + mn y′z′), (5.195)

with the usual meaning of the symbols.We now observe that the axes of the reference
system are main axes of inertia for the body of mass M . Then, by indicating with Ix ,
Iy , and Iz , the components of the inertia moment vector:

Ix =
∫∫∫

M
(y′2 + z′2) dM,

Iy =
∫∫∫

M
(z′2 + x ′2) dM,

Iz =
∫∫∫

M
(x ′2 + y′2) dM,

(5.196)

it is easily verified that:

25 Only because the center of gravity is at the origin of the axes, however !
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∫∫∫
M
x ′2 dM = Ix + Iy + Iz

2
− Ix ,

∫∫∫
M
y′2 dM = Ix + Iy + Iz

2
− Iy,

∫∫∫
M
z′2 dM = Ix + Iy + Iz

2
− Iz .

(5.197)

Thus, since the mixed inertia products vanish, the integral of the third term of
(5.192) is

[
Ix + Iy + Iz − 3(�2 Ix + m2 Iy + n2 Iz)

]
, and the external potential takes

the expression:

Ue(r, θ, φ) = G
M

r
+ G

2r3

[
Ix + Iy + Iz − 3(�2 Ix + m2 Iy + n2 Iz)

]
+

+ G
∞∑
k=3

1

rk+1

∫∫∫
M
r ′k Pk

(�x ′ + my′ + nz′

r ′
)
dM. (5.198)

Note that, according to the Pythagorean theorem, the quantity:

IOP =
∫∫∫

M

[
r ′2 − (�x ′ + my′ + nz′)2

]
dM, (5.199)

is the moment of inertia of the body with respect to the axis
−→
OP .

We now suppose that the ellipsoid of inertia has two axes (that is, it is either oblate
or prolate). Making the z-axis coincide with the symmetry axis, we set Ix = Iy . It
is also n = cos θ . The coefficient of the term of the potential in 1/r3 undergoes a
further reduction, becoming:

2Ix + Iz − 3(�2 + m2)Ix − 3n2 Iz =
= 2Ix−3(1 − n2)Ix − (3n2 − 1)Iz =

= (3n2 − 1)(Ix − Iz) = (3 cos2 θ − 1)(Ix − Iz). (5.200)

In conclusion, neglecting the terms of higher order than the second in the expansion
(5.192), the external potential of a rotationally symmetric body reduces to:

Ue(r, θ) ≈ G
M

r
− G

Iz − Ix
2r3

(3 cos2 θ − 1), (5.201)

if the reference system is barycentric, with the z-axis coincident with the axis of
symmetry.

To calculate the force at an external point P , it is convenient to rotate the reference
system so that P contains the plane xz, so that r = (x2 + z2)1/2 and cos θ = z/r ,
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with which the (5.201) becomes:

Ue(x, 0, z) ≈ G M

(x2 + z2)1/2
− G

(Iz − Ix )

2(x2 + z2)3/2

(
3z2

x2 + z2
− 1

)
=

= G
M

(x2 + z2)1/2
− G

(Iz − Ix )

2

2z2 − x2

(x2 + z2)5/2
. (5.202)

Let us now calculate the force in P as the gradient of Ue(P). The first partial deriva-
tives of (5.202) are:

∂Ue

∂x
= −G

M

r3
x + G

(Iz − Ix )

2r5
x (15 cos2 θ − 3),

∂Ue

∂y
= 0, (5.203)

∂Ue

∂z
= −G

M

r3
z + G

(Iz − Ix )

2r5
z (15 cos2 θ − 9).

In conclusion (Fig. 5.15), the acceleration exerted in P results:

a ≈ −G

[
M

r3
− Iz − Ix

2r5

(
15 cos2 θ − 3

)]
r − 3G (Iz − Ix )

cos θ

r4
k, (5.204)

wherek indicates the unit vector of the z-axis. The (5.204) shows that the acceleration
is not purely radial due to the presence of the term oriented as the z-axis. For an oblate
ellipsoid (Iz > Ix ), this term produces an acceleration directed towards the xy-plane.

Figure 5.15 allows us to guess the physical reason of precession, i.e., for the change
in direction of the orbital axis of a body revolving in an axisymmetric gravitation
field. Suppose that P is an artificial satellite on an inclined orbit relative to the

Fig. 5.15 External potential of an ellipsoid. The off-centering of the acceleration a is exaggerated

for graphical reasons. Note that, at a point P at latitude 0 <
π

2
− θ <

π

2
, the acceleration a is not

radial and can be decomposed into two components, radial (ar) and normal to the equatorial plane
(an)
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equatorial plane of the Earth, and assume that the planet can be modeled as an oblate
spheroid. According to (5.204), the satellite is subject to an acceleration that has both
radial and normal components. If the radial component were alone, being a central
force it would give rise to a purely plane motion even if not Keplerian (hence the
orbit would not be closed). The presence of a second component perpendicular to

the radius vector, |an| = −3G (Iz − Ix )
cos θ

r4
, produces a torque:

τ = |r × an| = r |an| sin θ ∝ cos θ sin θ. (5.205)

The phenomenon resembles that of a spinning top subject to Earth’s gravity. Obvi-
ously, as P moves along its orbit, the variation of θ affects the torque applied by an ,
which is zero on the equator and pole, and maximal for θ = π/4. This qualitative
consideration complements the quantitative treatment of Sect. 4.13.

5.12 Rotational Distortion of the Earth

In addition to gravity g, each point of the Earth’s surface feels the centrifugal force
induced by the diurnal solid-body rotation of the planet. In a reference frame cen-
tered at the barycenter with the z-axis oriented as the angular velocity −→ω ⊕ of the
Earth’s rotation,26 the potential of the centrifugal force per unit mass, ω2r sin θ ,
perpendicular to the z-axis and directed outwards, is (Fig. 5.16):

Uc =
∫ r

0
r ′ω2 sin2 θ dr ′ = 1

2
ω2r2 sin2 θ. (5.206)

Adding to this term the gravitational potential in the approximation of the third order
(5.201), we obtain the total potential for unit mass at a point P(r, θ) of the Earth
surface:

U(r, θ) = G
M⊕
r

− G
Iz − Ix
2r3

(
3 cos2 θ − 1

)
+ 1

2
ω2r2

(
1 − cos2 θ

)
. (5.207)

Let us ask what the shape of the Earth’s equipotential surfaces should be with
reference only to the centrifugal and gravitational forces.27 Rotational symmetry of
the total potential ensures that these surfaces cannot be functions of the azimuthal

26 The angular velocity of the Earth isω = 2π

86164
rad s−1, as it must be computed using the sidereal

day, which is ∼4min shorter that the solar day.
27 The reader will appreciate the tasty representation of the debate on the shape of the Earth (prolate
versus oblate) between Jacques Cassini (1677-1756), son of Giovanni Domenico, forefather of the
family, and second director of the Paris Observatory, and Pierre-Louis Moreau de Maupertuis, in
M. Terrall, Representing the Earth’s Shape: The Polemics Surrounding Maupertuis’s Expedition to
Lapland, ISIS, 83, No. 2, 218–237, 1992.
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Fig. 5.16 The effective
gravity of the Earth, geff, is
the vector sum of the gravity
g (approximately) directed
towards the center of the
Earth C and the opposite of
the centripetal force
ac = −→ω ⊕ × (−→ω ⊕ × s),
where |s| = r⊕ sin θ

coordinate φ. Furthermore, measurements and observations of the Earth, and anal-
ogy with the shape of the other Solar System bodies, suggest that the equipotential
surfaces must be nearly spherical. We therefore assume an analytic expression of the
type (5.134):

r = r⊕
[
1 − Y (cos θ)

]
, (5.208)

where r⊕ is the equatorial radius of the Earth, and Y (cos θ) a function such that
|Y | � 1 for each value of the variable (actually Y does not exceed 0.3%). With this
function and with the condition of equipotentiality, we obtain the equation:

U = 1

2
ω2 r2⊕ (1 − Y )2(1− cos2 θ) + G M⊕

r⊕(1 − Y )
+

− G (Iz − Ix )

2 r3⊕ (1 − Y )3

(
3 cos2 θ − 1

)
= U◦, (5.209)

where U◦ is a constant. We can simplify this expression by approximating (1 − Y )2

and (1 − Y )3 to unity. We obtain:

U = 1

2
ω2 r2⊕ (1 − cos2 θ) + G M⊕

r⊕(1 − Y )
− G (Iz − Ix )

2 r3⊕

(
3 cos2 θ − 1

)
. (5.210)

Moreover, since the surface is equipotential, the constant can be calculated at any
point. Choosing r = r⊕ (equatorial radius) at θ = π/2, that is, Y (cos θ) = 0 for
θ = π/2, the (5.210) becomes:

U = 1

2
ω2 r2⊕ + G M⊕

r⊕
+ G (Iz − Ix )

2 r3⊕
. (5.211)
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By equating (5.210) to (5.211), being both equal to U◦, we obtain:

Y (cos θ) ≈ Y

1 − Y
=
[
3(Iz − Ix )

2M⊕ r2⊕
+ ω2r3⊕

2G M⊕

]
cos2 θ. (5.212)

We note that the second term in square brackets is the ratio between the centrifugal
and the gravitational potentials at the equator:

φ = ω2 r3⊕
G M⊕

= 2
Uc

Ug
. (5.213)

In conclusion, within the limits of the approximations we have adopted, the equipo-
tential surface of the Earth is given by the equation:

r = r⊕
(
1 − f cos2 θ

)
, (5.214a)

with:

f = 3

2

Iz − Ix
M⊕ r2⊕

+ 1

2
φ. (5.214b)

By analogy with (5.152), we deduce that this surface is a spheroid with flattening

f = a − c

a
, where a = r⊕ and c are the semi-axes.28 Note that, from knowledge of

f and of φ, through (5.214b) we could calculate the difference between the polar and
equatorial inertia moments. However it is almost impossible to measure the constant
f with sufficient accuracy using triangulations. It is possible to infer it from the study
of the precession of the equinoxes or from the measures of acceleration of gravity,

as the latter is normal to equipotential surfaces, ge f f = ∇U =
(

∂U

∂r
,
1

r

∂U

∂θ

)
.

From (5.207) we calculate the gravitational acceleration:

|ge f f | =
[(

∂U

∂r

)2

+
(
1

r

∂U

∂θ

)2]1/2

≈
∣∣∣∣∂U∂r

∣∣∣∣ =

= G
M⊕
r2

− 3G
Iz − Ix
2r4

(
3 cos2 θ − 1

)
− ω2r

(
1 − cos2 θ

)
, (5.215)

since, under our assumptions about the moderate distortion of the Earth,
1

r

∂U

∂θ
can

be neglected. Using r = r⊕ together with (5.213) and (5.214b), and eliminating(
Iz − Ix

)
, after some simple reductions we have:

28 Note the difference with (5.152), where we modulated c instead of a.
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gef f = G
M⊕
r2⊕

(
1 + f − 3

2
φ

)
+
(
5

2
r⊕ω2 − 3 f G

M⊕
r2⊕

)
cos2 θ =

= g◦

⎛
⎜⎝1 +

5

2
φ − 3 f

1 + f − 3

2
φ

⎞
⎟⎠ cos2 θ, (5.216)

where the term:

g◦ = G
M⊕
r2⊕

(
1 + f − 3

2
φ

)
, (5.217)

indicates the gravity acceleration at the equator. The (5.217) is known as Clairaut29

equation. It shows that, at the first order, the acceleration of gravity varies with the
square of the latitude (� = (π/2) − θ ).

5.13 Potential of a Homogeneous Circular Torus

We now want to obtain the potential of a torus, a figure which is a solid of rev-
olution generated by the complete rotation of a circle around a coplanar and non-
intersecting axis. Its name is borrowed fromLatin, where it means “a round, swelling,
elevation, protuberance”. Toroidal structures have acquired increasing importance in
astrophysics as they are, for instance, key components of Active Galactic Nuclei
(AGN’s).

A torus is more complex than a solid sphere or ellipsoid because it is not a simply
connected body (in short, we can draw circles on its surface that cannot contract to
a point without leaving the torus figure, as is instead the case with a solid sphere).
Moreover, the surface of a torus has a curvature30 which depends on the angle in the
torus meridian cross-section (angle ψ in the upper panel of Fig. 5.18).

The easiest way to get the torus potential is by direct integration over the volume
but this procedure does not allow us to simplify the final expression and to explore the
gravitational properties of the this body. Here we address the problem by modeling
the torus through a set of infinitely thin rings, i.e., massive circles characterized by
one radius only.

29 Alexis Claude Clairaut (1713–1765) was a French mathematician, astronomer, and geophysicist.
Child prodigy and prominent supporter ofNewtonianism, hewas a leading scientist in the expedition
to Lapland (1736–37) led by Maupertuis: an adventure that helped confirming Newton’s theory for
the figure of the Earth, opposite to the prolate hypothesis formulated by Jacques Cassini, faithful
Cartesian.
30 The Gaussian curvature of the torus surface is: K = cosψ

R0(R + R0 cosψ)
, where ψ is the angle

in the torus meridian cross-section (see Fig. 5.18). This implies K > 1 in the external part of the
surface, K < 1 in the inner part (tracing the hole). The curvature is null for two angles, ψ = π/2,
3π/2.
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Fig. 5.17 Scheme of the attraction of a test particle by an infinitely thin ring (massive circle)

5.13.1 Potential of an Infinitely Thin Ring

We will start by considering the potential generated by a massive circle of total mass
M and radius R in a generic point P:

U = G
∫
M

dm

|PC | , (5.218)

where the mass of the ring element in C (Fig. 5.17) is:

dm = M

2πR
dl = M

2π
dα, (5.219)

and PC is the distance of P from C . In the following we will use a cylindrical
coordinate system.The distance PC can be found from the triangle PBC of Fig. 5.17:

PC2 = z2 + BC2, (5.220)

where BC is given by the triangle BOC :

BC2 = r2 + R2 − 2Rr cosα. (5.221)

Taking into account (5.218) and (5.219), we obtain:
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U(r, z) = GM

π

∫ π

0

dα√
r2 + z2 + R2 − 2Rr cosα

. (5.222)

Note that, since the massive circle is an axisymmetric body, the expression for the
potential does not depend on the azimuthal angle α. It can be rewritten in form of an
elliptic integral (see Appendix N.4) through the substitution:

cosα = cos(π − 2β) = 2 sin2 β − 1. (5.223)

It is convenient to use the dimensionless variables:

ρ = r

R
,

ζ = z

R
,

(5.224)

with which the (5.222) becomes:

U(ρ, ζ ) = GM

πR

√
m

ρ
K (m) = GM

πR
φ(ρ, ζ ), (5.225)

where:

φ(ρ, ζ ) =
√
m

ρ
K (m), (5.226)

is the dimensionless potential of a massive circle, and:

K (m) =
∫ π/2

0

dβ√
1 − m sin2 β

, (5.227)

is the complete elliptic integral of the first kind with module:

m = 4ρ

(ρ + 1)2 + ζ 2
. (5.228)

We can use the same simple considerations applied to the thin spherical shell (cf.
Sect. 5.4) to prove here that a massive circle is an attractor. Since it is a one-
dimensional figure, the mass element is dm ∝ dl and the corresponding element
of force dF ∝ dl/r2. So, there is no compensation of the forces acting on the parti-
cle and coming from the opposite side. Equilibrium is possible only at the center: a
characteristic shared also by the torus. But the torus has also a second set ofweightless
points forming a circle inside its volume.
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5.13.2 Potential of a Homogeneous Circular Torus

We now want to find the potential of a homogeneous circular torus modeling it by
a set of the massive circles [2]. The approach is similar to that we have adopted in
Sect. 5.4 for the potential of the solid sphere consisting of infinitely thin spherical
layers. Before getting started, it is useful to remember two theorems on solids of
revolution named after Pappus and Guldinus.31 The first theorem states that the area
A of a surface obtained by rotating a plane curve of length � by an angle of 2π around
a coplanar axis is equal to:

A = 2πR�, (5.229a)

where R is the distance of the center of the curve from the rotation axis. The second
theorem asserts that the volume V of a solid obtained by rotating a plane figure of
area S around a coplanar axis, without intersecting it, is equal to:

V = 2πRS, (5.229b)

where again R is the distance of the center of the plane figure from the rotational
axis.

That said, we take into consideration a torus with mass M , major radius R, and
minor (cross-section) radius R0 (Fig. 5.18). According to the (5.229), it has an area
S = (2πR)(2πR0) and a volume V = (2πR)(πR2

0). In order to evaluate its poten-
tial U(P) at any point P , including both internal and external regions (that is, inside
and outside the volume of the figure), we decompose the torus into a set of massive
circles (infinitely thin rings) coplanar to the symmetry plane. Note again that, due to
the symmetry of the figure about the z-axis of the coordinate systemwith origin at the
torus barycenter (Fig. 5.18), P can always be chosen to lie on the r z-plane. We first
compute the contribution by a generic massive circle of mass Mr , using the dimen-
sionless coordinates ρ = r/R, ζ = z/R of P(r, z) (see (5.224)). It is identified by
its intersect on the cross-section of the torus with the r z-plane, whose dimensionless
coordinates (hereafter circle coordinates) are:

η′ = x ′

R
,

ζ ′ = z′

R
. (5.230)

31 These theorems were originally obtained by the Greek mathematicians Pappus of Alexandria
(290–350 AD), but the first known demonstrations belong to the Swiss Jesuit Paul Guldin (1577–
1643). Kepler knew these theorems (1615). There is a story about a barrel of wine that motivated
the German astronomer to study how to calculate areas and volumes. It happened when he had to
argue with a merchant who was selling him the wine to celebrate his second marriage in Linz. The
man was likely trying to cheat about the quantity of the product. Kepler reacted by writing a book
entitled Nova stereometria doliorum vinariorum (New solid geometry of wine barrels).
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Fig. 5.18 Up: a 3D scheme
of a torus configuration.
Down: schematic
cross-section of a torus
showing the position of the
central massive circle and of
another circle of the set
composing the torus itself
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Owing to the results of Sect. 5.13.1, the potential Ur at P(ρ, ζ ) generated by the
massive circle with coordinates (η′, ζ ′) is:

Ur (ρ, ζ ; Mr , η
′, ζ ′) = GMr

πR′ φr (ρ, ζ ; η′, ζ ′), (5.231)

where R′ is the radius of the circle and the expression for φr is obtained by replacing
r/R with r/R′ and z/R with (z − z′)/R′ in (5.225) and (5.226). We now want to
refer the coordinates of the circle to the center C(R, 0) of the torus cross-section
(Fig. 5.18): x ′ = R′ − R, from where R′ = R + x ′. Consequently, the parameter of
the elliptic integral m in (5.228) transforms into:

mr = 4r/R′
(
1 + r

R′
)2 + (z − z′)2

R′2

= 4r/(1 + x ′)(
1 + r

1 + x ′

)2
+ (z − z′)2

(1 + x ′)2

=

= 4r(1 + x ′)
(1 + x ′ + r)2 + (z − z′)2

= 4ρ(1 + η′)
(1 + η′ + ρ)2 + (ζ − ζ ′)2

. (5.232)

In conclusion, the expression for the dimensionless potential of the component mas-
sive circle takes the form:



5.13 Potential of a Homogeneous Circular Torus 267

φr (ρ, ζ ; η′, ζ ′) =
√

(1 + η′)mr

ρ
K (mr ). (5.233)

The homogeneity of the torus implies the equality of the reduced masses κc = κr ,
where κc = Mc/(2πR) is the reducedmass of the central circle and κr = Mr/(2πR′)
that of the component circle. Then:Mr = McR′/R. Using this expression for (5.231),
we obtain the potential of the component circle:

Ur (ρ, ζ ; η′, ζ ′) = GMc

πR
φr (ρ, ζ ; η′, ζ ′). (5.234)

Due to the additive property, the potential of the torus is just the sum of all the
contributions by the component circles. To perform this integration, we replace in
(5.234) the finite mass of the circle, Mc, with the differential dM , which for the
circular torus of total mass M equals:

dM = M

πr20
dη′dζ ′, (5.235)

where r0 = R0/R is the dimensionless minor radius of the torus (a geometrical
parameter telling us the size of the torus cross-section in units of the torus width; cf.
Fig. 5.18). In conclusion, the potential of the homogeneous circular torus takes the
form:

Utor (ρ, ζ ) = GM

π2Rr20

∫ r0

−r0

∫ √
r20−η′2

−
√

r20−η′2

√
(1 + η′)mr

ρ
K (mr )dη′dζ ′ =

= GM

π2Rr20

∫ r0

−r0

∫ √
r20−η′2

−
√

r20−η′2
φr (ρ, ζ ; η′, ζ ′)dη′dζ ′, (5.236)

where K (mr ) is the complete elliptic integral of the first kind (5.227) with the param-
eter (5.232). This integral expression gives the torus potential for points belonging
either to the inner volume bounded by the torus surface (inside the torus body) and
to the region outside it.

Figure 5.19 plots the trend of the torus potential with the radial coordinate ρ in
the equatorial plane ζ = 0, computed numerically from (5.236) for different values
of the geometrical parameter r0 (here and for the next figure we use the unity system
G = 1, M = 1, R = 1). The curves for all values of r0 are seen to be inscribed within
the potential curve of the central massive circle (infinitely thin ring) of the samemass
M and radius R, located at the torus symmetry plane. The potential curve to the right
of the torus surface (ρ > 1 + r0) virtually coincides with the potential curve of the
circle, while to the left (ρ < 1 − r0) it stays lower and differs by a quantity that
depends on r0. We will investigate this in the next section.
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Fig. 5.19 Dependence of
the potential on the radial
coordinate ρ for tori with
different values of the
geometrical parameter r0.
The potential of a massive
circle (5.225) with the same
mass M of the torus is shown
by the dashed line
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In conclusion, Fig. 5.19 tells us that the outer potential of the torus can be approx-
imately represented by that of a massive circle of the same mass up to torus surface.
For ρ → 0, the values of the torus potential differ from those of the massive circle
by a quantity that depends on the geometric parameter r0, which is especially evident
for a thick torus (r0 > 0.5).

5.13.3 Approximation of the Homogeneous Torus Potential
in the Outer Region

We now justify analytically the result obtained in the previous section where we
showed that the outer potential of the torus can be represented by the potential of a
central massive circle of equal mass.32

Theouter region implies that (ρ − 1)2 + ζ 2 ≥ r20 .Within this region, the integrand
φr (ρ, ζ ; η′, ζ ′) in (5.236) has no singularities for all η′, ζ ′; therefore, we can expand
in a Maclaurin33 power series of η′, ζ ′ in the vicinity of the center of the torus cross-
section, η′ = ζ ′ = 0. Since the integrals in symmetrical limits of the series terms
containing cross derivatives and derivatives of the odd orders are equal to zero, only
the termswith the even orders remain in the expansion. By restricting to the quadratic
terms of the series, the potential of the component circle is:

32 The approximate expression for the torus potential in the inner region can be represented by the
sum of the cylinder potential and a term consisting of the curvature of the torus surface [2].
33 Colin Maclaurin (1698–1746): Scottish mathematician who gave important contributions to
geometry and algebra.
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φr (ρ, ζ ; η′, ζ ′) ≈ φc(ρ, ζ ) + 1

2

∂2φr

∂η′2

∣∣∣∣η′=0
ζ ′=0

η′2 + 1

2

∂2φr

∂ζ ′2

∣∣∣∣η′=0
ζ ′=0

ζ ′2, (5.237)

where φc =
√
m

ρ
K (m) is the dimensionless potential of the central circle (5.226)

with the module of the elliptic integral given by (5.228). The coordinates of this
circle are (R, 0), that is, the circle is located on the equatorial plane and its radius is
equal to the major radius of the torus, R.

The substitution of (5.237) into (5.236) gives us:

Utor (ρ, ζ ) ≈ GM

π2Rr20

∫ r0

−r0

∫ √
r20−η′2

−
√

r20−η′2

[
φc(ρ, ζ ) +

+1

2

∂2φr

∂η′2

∣∣∣∣η′=0
ζ ′=0

η′2 + 1

2

∂2φr

∂ζ ′2

∣∣∣∣η′=0
ζ ′=0

ζ ′2
]
dη′dζ ′. (5.238)

The first integral is solved immediately; it is the area of the torus cross-section:

∫ r0

−r0

∫ √
r20−η′2

−
√

r20−η′2
dη′dζ ′ = πr20 . (5.239)

The second and the third integrals are:

∫ r0

−r0

∫ √
r20−η′2

−
√

r20−η′2
η′2dη′dζ ′ =

∫ r0

−r0

∫ √
r20−η′2

−
√

r20−η′2
ζ ′2dη′dζ ′ = πr40

4
. (5.240)

Using these expression in (5.238), we obtain:

Utor (ρ, ζ ) ≈ GM

πR
φc ×

⎛
⎝1 + r20

8φc

⎡
⎣ ∂2φr

∂η′2

∣∣∣∣η′=0
ζ ′=0

+ ∂2φr

∂ζ ′2

∣∣∣∣η′=0
ζ ′=0

⎤
⎦
⎞
⎠ . (5.241)

Although each term in the square brackets is cumbersome, their sum can be reduced
to a compact form. Finally, after some transformations, the approximate expression
for the outer region torus potential takes the form:

Utor (ρ, ζ ) ≈ GM

πR
φc(ρ, ζ )

(
1 − r20

16
+ r20

16
S(ρ, ζ )

)
. (5.242)

The function:

S(ρ, ζ ) = ρ2 + ζ 2 − 1

(ρ − 1)2 + ζ 2

E(m)

K (m)
, (5.243)
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contains the complete elliptic integral of the second kind (see Appendix N.4):

E(m) =
∫ π/2

0
dβ
√
1 − m sin2 β, (5.244)

with m defined by (5.228). We may conveniently adopt the new variable η = ρ − 1,
which is counted from the torus cross-section. It allows the expression (5.242) to be
written as:

S(η, ζ ) = η2 + ζ 2 + 2η

η2 + ζ 2

E(m)

K (m)
, (5.245)

where:

m = 4(η + 1)

(η + 2)2 + ζ 2
. (5.246)

Expression (5.242) (we call it the S-approximation), coupled with (5.243) or (5.245),
represents the torus potential quite accurately in the outer region (Fig. 5.19). Since
|S| ≤ 1, the second multiplier in (5.242) is a slowly varying function of ρ and ζ . Let
us simplify the expression (5.242) replacing the second multiplier by its asymptotic
approximations.

When ρ → 0, corresponding to η → −1, that is, near the symmetry axis of the
torus, the parameterm → 0 and E(m)/K (m) → 1; therefore, S → (ζ 2 − 1)/(ζ 2 +
1). The expression for the torus potential is then:

Utor (ρ, ζ ) ≈ GM

πR
φc(ρ, ζ )

(
1 − r20

16
+ r20

16

ζ 2 − 1

ζ 2 + 1

)
. (5.247)

Since the dimensionless potential of the massive circle (5.225) at the symmetry axis
is φc = π/

√
1 + ζ 2, we obtain for the torus:

Utor (0, ζ ) ≈ GM

R

1√
1 + ζ 2

(
1 − r20

16
+ r20

16

ζ 2 − 1

ζ 2 + 1

)
, (5.248)

and for ζ = 0 in the symmetry center of the torus:

Utor (0, 0) ≈ GM

R

(
1 − r20

8

)
. (5.249)

The second term r20/8 in (5.249) describes the difference of the torus potential at the
symmetry axis with respect to the potential of an infinitely thin ring.

At large η, the parameter m → 0 and S → 1 (5.249). In this second case:

Utor (ρ, ζ ) ≈ GM

πR
φc(ρ, ζ ), (5.250)
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r =0.50

Utor

Fig. 5.20 Dependence on ρ of the torus potential with r0 = 0.5 for ζ = 0 (upper curves) and ζ =
r0 = 0.5 (lower curves). Solid lines show the potential calculated with the exact formula (5.236).
The S-approximation (5.242) of the potential is shown by the dashed lines, while the dotted lines
represent the limiting cases of the S-approximation: the potential curve for the infinitely thin ring
(5.250) is to the right of the torus cross-section, and the curve representing a “shifted” potential of
the infinitely thin ring (5.247) is to the left. The boundaries of the torus cross-section are shown by
the dotted vertical lines

that is, the torus potential is equal to the potential of the massive circle with the same
mass M and radius R. It is seen from Fig. 5.20 that the S-approximation for the
torus outer potential (5.242) is applicable up to the torus surface (upper curves).

In summary, the outer potential of the torus can be represented with good accu-
racy by a potential of the massive circle of the same mass. The dependence of the
geometrical parameter r0 appears only in the torus hole; it is taken into account in
the “shifted” potential of the massive circle given by (5.247). These approximations
are valid up to the surface of the torus and are a simple and useful tool. There is some
analogy to the known result concerning the external potential of a solid sphere of
mass M , which is the same as that generated by a point mass M located at the center
(see Sect. 5.4).
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Appendix A
Fundamental Formulas of Spherical
Trigonometry

Plato, phrase engraved at the Academy’s door
Let no one ignorant of geometry enter here.

We start with some definitions and some intuitive properties. The intersection of a
spherical surface with a plane is called either maximum or minor circle depending
on whether the plane contains the center of the sphere or not. Only one maximum
circle passes for any two distinct points of the spherical surface. Three maximum
circles pass for three distinct points provided that these points do not all lie on a
same maximum circle. Each of the three distinct maximum circles are divided into
four arcs. Each closed surface on the sphere generated by three such arcs is called
spherical triangle.

Three points identify a maximum of eight spherical triangles, one of which has its
three arcs, called sides, not exceeding a semicircle. In each spherical triangle three
angles are also defined by the tangents to the corresponding maximum circles in
the three crossing points, called vertexes of the angles. It is then clear that ABC in
Fig.A.1 is a spherical triangle, as opposed to the triangle DEC, which is not since it
is composed by a minor circle too (the circle making the DE side).

Consider1 now the spherical triangle ABC in Fig.A.2 and trace the straight lines
through O B and OC , then the tangents in A to the maximum circles passing through
B A andC A. Being on the same planes, these lines give rise to two intersection points
E and D that we join. We call a, b, and c the sides of the triangle, which correspond
to the top angles as in the figure. It is clear then that the angle ̂E AD of the plane
triangle AED corresponds to the vertex angle in A of the spherical triangle ABC.

Let us take a look at the two plane triangles OED and AED. The length of their
common side E D can be written through the Carnot2 cosine theorem:

1 This section is largely inspired by W.M. Smart’s classical book [1].
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Fig. A.1 Triangles on the
sphere

Fig. A.2 Projection of a
spherical triangle on a plane

E D
2 = O E

2 + O D
2 − 2 O E · O D cos a,

E D
2 = AE

2 + AD
2 − 2 AE · AD cos A,

(A.1)

where A is the angle corresponding to the corner A of the triangle ABC (the angle
̂B AC = ̂D AE = A). Thus:

O E
2 + O D

2 − 2 O E · O D cos a = AE
2 + AD

2 − 2AE · AD cos A. (A.2)

2 Lazare Nicolas Marguérite Carnot (1753–1823): French general, mathematician, physicist, and
politician. Extraordinary personality, he lived at the turn of the French Revolution into the
Napoleonic age. He was also the father of the physicist and engineer Nicolas Léonard Sadi Carnot,
one of the founders of thermodynamics.
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From the plane right triangles AOE and AOD, we have:

O A = O E cos b,

O A = O D cos c,
(A.3)

from which:

O E = O A

cos b
,

O D = O A

cos c
,

(A.4)

and also:

AE = O A tan b = O A
sin b

cos b
,

AD = O A tan c = O A
sin c

cos c
.

(A.5)

By replacing in (A.2), we obtain:

O A
2

cos2 b
+ O A

2

cos2 c
− 2

O A
2
cos a

cos b cos c
=

= O A
2 sin2 b

cos2 b
+ O A

2 sin2 c

cos2 c
− 2 O A

2 sin b sin c cos A

cos b cos c
, (A.6)

which, after simplification and proper grouping, gives:

1 − sin2 b

cos2 b
+ 1 − sin2 c

cos2 c
= 2

(
cos a

cos b cos c
− sin b sin c cos A

cos b cos c

)
, (A.7)

and, by simplifying further:

cos a = cos b cos c + sin b sin c cos A. (A.8)

In the same way we obtain the cosine formulas that constitute the group:

⎧⎪⎨
⎪⎩
cos a = cos b cos c + sin b sin c cos A,

cos b = cos a cos c + sin a sin c cos B,

cos c = cos a cos b + sin a sin b cosC,

(A.9)

where B and C are the angles corresponding to the corners B and C of the triangle
ABC . Let us now write the first of them in the form:

cos a − cos b cos c = sin b sin c cos A, (A.10)
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and square it:

cos2 a + cos2 b cos2 c − 2 cos a cos b cos c = sin2 b sin2 c cos2 A. (A.11)

The right part of (A.11) can be written as:

sin2 b sin2 c cos2 A = sin2 b sin2 c (1 − sin2 A) =
= sin2 b sin2 c − sin2 b sin2 c sin2 A =

= (1 − cos2 b)(1 − cos2 c) − sin2 b sin2 c sin2 A =
= 1 − cos2 b − cos2 c + cos2 b cos2 c − sin2 b sin2 c sin2 A. (A.12)

Replacing (A.12) in (A.11), after simplification we have:

sin2 b sin2 c sin2 A = 1 − cos2 a − cos2 b − cos2 c + 2 cos a cos b cos c. (A.13)

The symmetry of the right-hand side ensures that the left term takes the same value
whatever the choice of the group equation (A.9). So we can write:

sin2 b sin2 c sin2 A = sin2 a sin2 b sin2 B = sin2 a sin2 c sin2 C. (A.14)

Since the implied angles are all lower than π, the latter can be put in the usual form:

sin a

sin A
= sin b

sin B
= sin c

sinC
, (A.15)

which are the so-called sinus formulas for a spherical triangle. Let us now write the
second of the (A.9) in the form:

cos b − cos a cos c = sin a sin c cos B, (A.16)

and replace cos a with the first of them. It is:

cos b − cos c (cos b cos c + sin b sin c cos A) =
= cos b − cos2 c cos b − sin b sin c cos c cos A =

= cos b − cos b (1 − sin2 c) − sin b sin c cos c cos A =
= cos b − cos b + cos b sin2 c − sin b sin c cos c cos A =

= cos b sin2 c − sin b sin c cos c cos A. (A.17)

Finally we have:

cos b sin2 c − sin b sin c cos c cos A = sin a sin c cos B, (A.18)

which, divided by sin c, gives:
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sin a cos B = cos b sin c − sin b cos c cos A. (A.19)

Together with similar expressions, this latter forms the group:

⎧⎪⎨
⎪⎩
sin a cos B = cos b sin c − sin b cos c cos A,

sin b cosC = cos c sin a − sin c cos a cos B,

sin c cos A = cos a sin b − sin a cos b cosC.

(A.20)

Equations (A.9), (A.15), and (A.20) form first spherical group, also known as the
first Gauss group.

The vertex angles can be also expressedwith similar formulas that we givewithout
demonstration:

⎧⎨
⎩
cos A = − cos B cosC + sin B sinC cos a,

cos B = − cos A cosC + sin A sinC cos b,

cosC = − cos A cos B + sin A sin B cos c,
(A.21)

⎧⎪⎨
⎪⎩
sin A cos b = cos B sinC + sin B cosC cos a,

sin B cos c = cosC sin A + sinC cos A cos b,

sinC cos a = cos A sin B + sin A cos B cos c.

(A.22)

Let us now consider the second of the (A.9), where we replace cos c with the expres-
sion given by the third of the same group:

cos b = cos a (cos a cos b + sin a sin b cosC) + sin a sin c cos B =
= cos2 a cos b + cos a sin a sin b cosC + sin a sin c cos B. (A.23)

After some simplification, it is:

cos b (1 − cos2 a) = cos b sin2 a =
= cos a sin a sin b cosC + sin a sin c cos B. (A.24)

We now divide the left and right sides by sin a sin b and obtain:

cos b sin a

sin b
= cos a cosC + sin c

sin b
cos B. (A.25)

But, from (A.15) we have that:

sin c

sin b
= sinC

sin B
, (A.26)

which, substituted in (A.25), gives in the end:
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sin a cot b = cos a cosC + sinC cot B. (A.27)

Together with the other two analogous formulas, it forms the group:

⎧⎪⎨
⎪⎩
sin a cot b = cos a cosC + sinC cot B,

sin b cot c = cos b cos A + sin A cot C,

sin c cot a = cos c cos B + sin B cot A.

(A.28)

Another group is:

⎧⎪⎨
⎪⎩

sin A cot B = − cos A cos c + sin c cot b,

sin B cot C = − cos B cos a + sin a cot c,

sinC cot A = − cosC cos b + sin b cot a.

(A.29)

The (A.28), (A.29) are called cotangent formulas.



Appendix B
Formulas of Transformation of Coordinate
Systems

Giuseppe Tomasi di Lampedusa, The Leopard

Everything must change so that everything can stay the
same.

Let S1[x, y, z] and S2[x ′, y′, z′] be two orthogonal Cartesian reference systems hav-
ing the same origin O . As usual, we denote with i, j, k, and i′, j′, k′, the unit vectors of
the two systems. The coordinates of a point P(x ′,y′,z′) relative to the second system
are linked to those in S1, P(x , y, z), by means of the transformation formulas3:

x ′ = a11 x + a12 y + a13 z,

y′ = a21 x + a22 y + a23 z, (B.2)

z′ = a31 x + a32 y + a33 z,

where each coefficient ai j represents the cosine of the angle between the i-th axis of
the system S2 and the j-th axis of the system S1:

a11 = cos(x̂ ′x) a12 = cos(x̂ ′y) a13 = cos(x̂ ′z),
a21 = cos(ŷ′x) a22 = cos(ŷ′y) a23 = cos(ŷ′z),
a31 = cos(ẑ′x) a32 = cos(ẑ′y) a33 = cos(ẑ′z).

(B.3)

In fact, if r = −→
O P , it is:

3 Matrix notation can be also used:∣∣∣∣∣∣
x ′
y′
z′

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣×
∣∣∣∣∣∣

x
y
z

∣∣∣∣∣∣ . (B.1)
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r = x i + yj + zk = x ′i′ + y′j′ + z′k′, (B.4)

which, multiplied scalarly by i′, j′, and k′, shows us that the (B.2) follow from the
orthogonality of the axes. In the same way we prove that the system (B.2) can be
inverted in:

x = a11 x ′ + a21 y′ + a31 z′,
y = a12 x ′ + a22 y′ + a32 z′, (B.5)

z = a13 x ′ + a23 y′ + a33 z′.

The transformation between the two coordinate systems therefore depends, via (B.2)
and (B.5), on the nine direction cosines alm (l, m = 1, 2, 3). However, they are not
all independent from each other, as there are the following six relations:

al1am1 + al2am2 + al3am3 = δlm

{= 0 if l �= m,

= 1 if l = m,
(B.6)

with m ≥ l = 1, 2, 3. They are easily obtained from (B.4) by replacing the vector r
with the three unit vectors of each of the two reference systems:

i′ = a11i + a12j + a13k,

j′ = a21i + a22j + a23k, (B.7)

k′ = a31i + a32j + a33k,

and:

i = a11i′ + a21j′ + a31k′,
j = a12i′ + a22j′ + a32k′, (B.8)

k = a13i′ + a23j′ + a33k′.

The six relations (B.6) are obtained by internally multiplying each l-th identity of
(B.7) with any other m-th identity of (B.8), respecting the condition m > l. In addi-
tion, by replacing into the identities:

i′ = j′ × k′,
j′ = k′ × i′, (B.9)

k′ = i′ × j′,

the expressions of the unit vectors for the system S2 given by (B.7), further nine
relations are obtained that, while not independent, will be of some use to us:
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Fig. B.1 Relations between
concentric orthogonal
reference systems

a11 = a22 a33 − a23 a32,

a21 = a13 a32 − a12 a33, (B.10a)

a31 = a12 a33 − a13 a23,

a12 = a23 a31 − a21 a33,

a22 = a11 a33 − a13 a31, (B.10b)

a32 = a13 a21 − a11 a23,

a13 = a21 a32 − a22 a31,

a23 = a12 a31 − a11 a32, (B.10c)

a33 = a11 a22 − a12 a21.

The six identities (B.6) show that three angles are sufficient to identify all nine
direction cosines involved in the transformation from the system S1 to S2 and vice
versa. In the applications of interest for us we choose (see Fig.B.1):

– the angle 0 ≤ i ≤ π between the axes z and z′,
– the angle 0 ≤ � ≤ 2π between the x axis and the intersection x ′′ between the
coordinate planes xy and x ′y′ (line of nodes), and

– the angle 0 ≤ δ ≤ 2π between x ′′ and x ′.

We now compute the direction cosines alm . From Fig.B.1 it is apparent that:
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x̂ z = x̂ ′′z = ŷz = π

2
,

x̂ x ′′ = �,

x̂ ′′y = π

2
− �,

̂x ′x ′′ = δ,

̂x ′′y′ = π

2
− δ,

ẑz′ = i.

(B.11)

With that, by applying the cosine formula to suitable spherical triangles of Fig.B.1,
we have:

triangle xx ′′x ′ : a11 = cos(x̂ x ′) = cos� cos δ − sin � sin δ cos i, (B.12a)

triangle yx ′′x ′ : a12 = cos(ŷx ′) = sin� cos δ + cos� sin δ cos i, (B.12b)

triangle zx ′′x ′ : a13 = cos(ẑx ′) = sin δ sin i, (B.12c)

triangle xx ′′y : a21 = cos(x̂ y′) = − cos� sin δ − sin� cos δ cos i, (B.12d)

triangle yx ′′y′ : a22 = cos(ŷy′) = − sin� sin δ + cos� cos δ cos i, (B.12e)

triangle zx ′′y′ : a23 = cos(ẑy′) = cos δ sin i, (B.12f)

triangle xzz′ : a31 = cos(x̂ z′) = sin� sin i, (B.12g)

triangle yzz′ : a32 = cos(ŷz′) = − cos� sin i, (B.12h)

and, directly:

angle zz′ : a33 = cos(ẑz′) = cos i. (B.12i)



Appendix C
About Vector Operators

Lao Tzu

If you do not change direction, you may end up where you
are heading.

By the vector differential operator:

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
, (C.1)

commonly known as nabla,4 the gradient of a derivable scalar field f (x, y, z) writes
as:

grad f = ∇ f = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k. (C.2)

The gradient of f is the vector providing direction and value of themaximal variation
per unit length of f . The divergence is the application of∇ to a derivable vector field
V(x, y, z)= Vx i + Vyj + Vzk:

divV = ∇V = ∂Vx

∂x
+ ∂Vy

∂y
+ ∂Vz

∂z
. (C.3)

It measures the local tendency of a vector field to diverge or converge. The meaning
of this operator becomes clear by considering the continuity equation that expresses

4 The term comes from the name of a traditional stringed musical instrument of the ancient Middle
East peoples (Hebrews and Phoenicians), the ‘nebel’ or ‘nabla’. It is similar to a lyre and a harp,
but with a sound box with a triangular profile, which recalls that of an inverted �. The symbol,
originally adopted by Hamilton in the form of the lying �, came in use at the middle of the 19-th
century.
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the conservation law, in a local form, for a generic physical quantity using its flow
through a closed surface. For instance, in fluid dynamics (cf. [2]):

∂ρ

∂t
+ ∇(ρv) = 0. (C.4)

It shows that, if the divergence of the matter current ∇(ρv) is positive, then there
is a local depletion as ∂ρ/∂t is negative; if on the contrary ∇ (ρv) < 0, there is an
enrichment as ∂ρ/∂t > 0. If the divergence is null, than ∂ρ/∂t = 0 and the flow is
stationary.

The curl of the vector field V is defined as:

rotV = ∇×V =
=
(

∂Vz

∂y
− ∂Vy

∂z

)
i +

(
∂Vx

∂z
− ∂Vz

∂x

)
j +

(
∂Vy

∂x
− ∂Vx

∂y

)
k. (C.5)

This formula can be memorized by applying the rules of determinants to the form:

∇×V =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

Vx Vy Vz

∣∣∣∣∣∣∣∣∣∣
. (C.6)

It measures the tendency of a vector field to generate a rotation, giving both the
direction and the orientation of the rotation axis and, with its module, the amount of
rotation at each point.

The divergence of the gradient of a scalar field f is:

∇ · (∇ f ) = ∇2 f = ∂2 f

∂x2
+ ∂2 f

∂x2
+ ∂2 f

∂z2
, (C.7)

where ∇2 = � = ∇· ∇ is also called Laplace operator.
Gradient, divergence, and curl satisfy the following properties:

∇×(∇ f ) = 0, (C.8a)

∇ · (∇×V) = 0, (C.8b)

∇( f + g) = ∇ f + ∇g, (C.8c)

∇ · (V + U) = ∇· V + ∇· U, (C.8d)

∇×(V + U) = ∇×V + ∇×U, (C.8e)

∇( f g) = f ∇g + g∇ f, (C.8f)

∇ · ( f V) = f ∇ · V + V · ∇ f, (C.8g)

∇×( f V) = f ∇×V + V×∇ f, (C.8h)
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∇ · (V×U) = U · ∇×V − V · ∇×U, (C.8i)

∇×(V×U) = (U · ∇)V − U(∇ · V) − (V · ∇)U + V(∇ · U), (C.8j)

∇×(∇×V) = ∇(∇ · V) − ∇2V, (C.8k)

∇(V · U) = (U · ∇)V + (V · ∇)U +
+ U×(∇×V) + V×(∇×U). (C.8l)

It is useful to express the vector operators in spherical coordinates O[r, θ,φ]:

∇ f =ir
∂ f

∂r
+ iθ

1

r

∂ f

∂θ
+ iφ

1

r sin θ

∂ f

∂φ
, (C.9a)

∇ · V = 1

r2
∂

∂r
(r2Vr ) + 1

r sin θ

∂

∂θ
(sin θ Vθ) + 1

r sin θ

∂Vφ

∂φ
, (C.9b)

∇×V = ir
1

r sin θ

{
∂

∂θ
(sin θVφ) − ∂Vθ

∂φ

}
+

+ iθ
1

r

{
1

sin θ

∂Vr

∂φ
− ∂

∂r
(r Vφ)

}
+ iφ

1

r

{
∂

∂r
(r Vθ) − ∂Vr

∂θ

}
, (C.9c)

where ir , iθ, iφ are the unit vectors of the spherical coordinate axes and Vr , Vθ, Vφ

are the components of the vector V along these axes.
The Laplace operator can be expressed in spherical coordinates in the two equiv-

alent forms:

∇2 f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2
, (C.10a)

∇2 f = 1

r

∂2

∂r2
(r f ) + 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2
. (C.10b)

Finally, we want to mention two theorems without proving them.

Divergence theorem5 the flow of a regular vector field V through a closed surface
S is equal to the integral of the divergence of the field extended to the volume �

enclosed by this surface:

∫∫
S

V · n d S =
∫∫

S
V · dS =

∫∫∫
�

∇ · V d�, (C.11)

where n is the vector normal to the surface element d S (oriented outwards), and
dS = d S n. We can visualize the theorem by saying that the flow through S is given
by the sum of the contributions of all the sources present in V , counted with their sign
(a negative divergence is equivalent to a drain). It is useful to note that this theorem

5 Known also as Gauss’s or Ostrogradsky’s theorem, after the name of the Russian Empire mathe-
matician and physicist Michail Vasilyevich Ostrogradsky (1801–1862).
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generalizes integration by parts which holds at one dimension and Green’s theorem
which holds at two dimensions.

Stokes6 or curl theorem: in 3D space the circulation of a regular vector field V
(i.e., its line integral) along a closed contour � is equal to the flow of the field curl of
V through the surface encircled by �:

∮
�

V d� =
∫∫

S
∇×V · n d S. (C.12)

6 George Gabriel Stokes (1819–1903): Irish mathematician and physicist, made important contri-
butions to fluid dynamics, optics, and mathematical physics.
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Relative Motion

Blaise Pascal

Our nature consists in motion; complete rest is death.

We want to review the formula providing the acceleration in a reference frame
S′[x ′, y′, z′], which is in accelerated motion with respect to an inertial frame
S[x, y, z]. For sake of simplicity, we first distinguish two cases, when:

1. S′ moves of rectilinear motion (but not uniform, otherwise nothing would happen
according to Galilei’s principle) with a velocity vr and an acceleration ar with
respect to S;

2. O ′ is fixed but the system S′ rotates around an axis with an angular velocity −→ω
which can be a function of time.

Obviously the complete formula will contemplate both cases.

Pure Translation

We consider a point P and its vector radii from O and O ′ respectively: r = −→
O P and

r′ = −−→
O ′ P (Fig.D.1). It is; −→

O P = −−→
O O ′ + −−→

O ′ P, (D.1)

and, placing R = −−→
O O ′, by time derivatives:

dr
dt

= dR
dt

+ dr′

dt
, (D.2a)

d2r
dt2

= d2R
dt2

+ d2r′

dt2
, (D.2b)
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288 Appendix D: Relative Motion

Fig. D.1 Relative
coordinate systems

where dr/dt and d2r/dt2 are velocity and acceleration in S, dr′/dt and d2r′/dt2

the relative velocity and acceleration in S′, and dR/dt and d2R/dt2 the velocity and
acceleration of O ′ as seen from an observer in S, i.e., from the inertial reference
frame.

Pure Rotation

Wenow exclude translation and suppose instead that S′ rotates around an axis passing
through O ′ with an angular velocity −→ω . With no loss of generality, we may assume
that O and O ′ are coincident. Remembering that any vector V of constant modulus
and rigidly connected with S′ has a velocity dV/dt = −→ω × V, and therefore the
derivatives with respect to time of the unit vectors of the coordinate axes of S′ are:

di′

dt
= −→ω × i′,

dj′

dt
= −→ω × j′,

dk′

dt
= −→ω × k′, (D.3)

the velocity of a vector X = Xx i + X yj + Xzk = Xx ′ i′ + X y′ j′ + Xz′k′ is:

dX
dt

= d Xx ′

dt
i′ + d X y′

dt
j′ + d Xz′

dt
k′ + Xx ′

di′

dt
+ X y′

dj′

dt
+ Xz′

dk′

dt
, (D.4)

that is, using the (D.3):
dX
dt

= dX′

dt
+ −→ω × X′, (D.5)

where
dX′

dt
is the velocity relative to the rotating system S′ (the velocity that an

observer rigidly connected to S′ would measure). A further derivation with respect
to time gives us the acceleration:

d2X
dt2

= d

dt

(dX′

dt
+ (−→ω × X′) )+ −→ω × dX

dt
=
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= d2X′

dt2
+ d

dt

(−→ω × X′)+ −→ω ×
(

dX′

dt
+ −→ω × X′

)
=

= d2X′

dt2
+ d−→ω

dt
× X′ + −→ω × dX′

dt
+ −→ω × dX′

dt
+ −→ω × (−→ω × X′) =

= d2X′

dt2
+ d−→ω

dt
× X′ + 2−→ω × dX′

dt
+ −→ω × (−→ω × X′) . (D.6)

The first term at the right-hand side of (D.6) is the acceleration as seen sitting on
S′. The second is the contribution given by the changing with time of −→ω (Euler’s
acceleration). The third is the so-called Coriolis7 acceleration, and the forth is the
centripetal acceleration, always directed toward the rotational axis and orthogonal
to −→ω . In fact, using (C.8k):

−→ω × (−→ω × X′) = (−→ω · X′)−→ω − (−→ω · −→ω )X′, (D.7)

with which −→ω × (−→ω × X′) · −→ω = 0.

Translation + Rotation

Finally, placing X = r′ and summing up the (D.2b) with the (D.6), we obtain the
complete expression for the relative acceleration:

d2r
dt2

= d2R
dt2

+ d2r′

dt2
+ d−→ω

dt
× r′ + 2−→ω × dr′

dt
+ −→ω × (−→ω × r′) . (D.8)

7 Gaspard-Gustave de Coriolis (1792–1843) was a French mathematician, physicist, and mechan-
ical engineer. He lived in the period of the industrial revolution, whose problems led him to study
the rotation of bodies. His name is among those of the 72 French scientists, engineers, and mathe-
maticians engraved on the sides of the Eiffel Tower under the first balcony.
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The Mirror Theorem

Brothers Grimm, Snow White

Mirror mirror on the wall who is the fairest of them all?

The form of the equations ofmotion of the N -body problem allows us to formulate an
interesting theorem, known as mirror theorem, developed by the British astronomer
Archie R. Roy and the Canadian astronomerMichaelW. Ovenden in the 1950s along
the lines traced by Poicaré [3], which is useful in studying non-integrable systems:
if the N masses are subject only to mutual gravitational attraction and if at some
time t each radius vector from the gravity center, ri , is orthogonal to each velocity
vector, ṙ j (i �= j = 1, . . . , N ), the orbit described by each of the masses for t ≥ t is
the mirror image of the orbit prior to t , symmetrically with respect to t .

The rigorous proof of this theorem is straightforward.We start observing that there
can be only two configurations (at the time t) capable of satisfying the hypothesis
(Fig.E.1):

1. all the radius vectors ri are contained on the same plane and all the velocities ṙi

are orthogonal to that plane (and therefore parallel or antiparallel to each other);
2. all the radius vectors ri are contained on the same straight linewhere the velocities

are orthogonal (without necessarily being parallel to each other, though).

Let us consider the first of these configurations, which we call C . By changing
directions of all velocities, we obtain a configuration C ′ that mirrors the previous
one. In fact, it is sufficient to change the direction of the coordinate axis perpendicular
to the plane containing the radius vectors to get back a configuration C ′′ of positions
and velocities identical to the starting one. The identity of the initial conditions in C
and C ′′ at the time t = t guarantees that the orbits of each of the N -bodies will be
the same in both cases. On the other hand, the reference systems of C and C ′′ are
mirror-like; so, if we refer the individual orbits of both of them to the same coordinate
system, they will be mirror images.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer
Nature Switzerland AG 2022
E. Bannikova and M. Capaccioli, Foundations of Celestial Mechanics, Graduate Texts
in Physics, https://doi.org/10.1007/978-3-031-04576-9

291

https://doi.org/10.1007/978-3-031-04576-9
 2261 61833 a 2261 61833 a
 
https://doi.org/10.1007/978-3-031-04576-9


292 Appendix E: The Mirror Theorem

Fig. E.1 Collinear (left) and planar (right) mirror configurations

Fig. E.2 Collinear mirror
configuration for
Earth-Moon-Sun

This is exactly what happens if we compare the orbits of C and C ′. Now, the
change in the direction of velocities from C to C ′ can be thought of as a reversal
of the time axis. In other words, at each instant t − t , C equals C ′ at the time t − t ,
i.e., the evolution of C ′ on a timeline originating at t and oriented towards the past
represents the evolution of C from t forward. But, as we have seen, the orbits in the
two cases are one the mirror of the other; therefore the theorem remains proved for
the first of the two configurations listed above. We leave the reader to repeat, for
the collinear configuration, the reasoning just made, reversing the direction of the
straight line that contains the vector radii.

We now prove a corollary of the mirror theorem: if a self-gravitating system
of N massive points satisfies the mirror theorem in two distinct epochs, separated
by the time interval �t , the orbits of all the bodies of the system are necessarily
periodic of the same period P = 2�t . Again the proof is quite simple. If the mirror
configuration C takes place at the time t = −t and the configuration D at time t = 0,
the first one will occur once more at t = t , the second one at the time t = 2 t and
so on (in other words, two reflections cancel each other). This means that the orbits
must be periodic of period P = 2 t . As an example of the application of this theorem,
let us imagine that we have three bodies of which we know, for some reason, that
at two successive epochs t1 and t2 they produce an eclipse (Fig.E.2). Thanks to the
corollary of the mirror theorem we can then say that they describe periodic orbits of
period P = 2|t2 − t1|.



Appendix F
On the Solution of Kepler’s Equation

Johannes Kepler

Nature uses as little as possible of anything.

Introduced in Sect. 2.7 and represented in Fig. F.1, Kepler’s equation:

M = E − e sin E, (F.1)

is a transcendent relation between the mean anomaly M and the eccentric anomaly
E , holding for the elliptical motion with eccentricity e. Since Eq. (F.1) surpasses the
powers of algebraic methods, appropriate expansions are in order to solve or use it
in complex expressions. We consider here the developments made by Lagrange and
Fourier, as well as an iterative numerical method.

F.1 Lagrange’s Inversion Theorem

Consider the following relation between two variables x and y:

y = x + α φ(y), (F.2)

where φ is a function and α is a parameter. A theorem due to Lagrange8 states that
any function f (y), whose independent variable y satisfies a relation of the type (F.2),
can be expanded in a power series of α:

8 A simpler proof of this theorem was given by Laplace in 1780, 10 years after Lagrange’s work.
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Fig. F.1 Kepler’s equation
for a set of values of the
eccentricity

f (y) = f (x) +
∞∑

n=1

αn

n!
dn−1

dxn−1

(
φn(x)

d f (x)

dx

)
, (F.3)

provided that both functionsφ and f are indefinitely derivable and theα is sufficiently
small to assure convergence [4].

To apply Lagrange’s expansion to the Kepler equation (F.1), let’s assume y = E ,
x = M , φ(y) = sin E , α = e, and f (y) = y, with which the series (F.3) becomes:

E = M +
∞∑

n=1

en

n!
dn−1

d Mn−1
sinn M. (F.4)

For example, by truncating the expansion at the third order of e, with some manipu-
lations we obtain:

E ≈ M +
(

e − e3

8

)
sin M + e2

2
sin(2M) + 3e3

8
sin(3M). (F.5)

It can be proven that the complete series (F.4) converges absolutely for any value of
M as long as e < el � 0.6627 [5]. This threshold value of the eccentricity is called
Laplace limit as it was firstly found by the French mathematician. If el ≤ e < 1, the
series does not converge for any value of M but multiples of π. So, the Lagrange
expansion is suitable to approximate the Kepler equation when the eccentricity is not
too high, which is the case for the major planets and satellites of the Solar System
(where it is always e < 0.25). For higher eccentricities, another type of development
is required which, via the Fourier theorem, leads to a series of Bessel functions.
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F.2 Fourier’s Expansion Theorem

The Fourier theorem asserts that, if f (x) is a periodic function of period 2π, it can
be expanded in a trigonometric series [6]:

f (x) = a◦
2

+
∞∑

n=1

(
an cos(nx) + bn sin(nx)

)
, (F.6)

which converges uniformly9 in the interval 0 ≤ x ≤ 2π. The coefficients an and bn

are:

an = 1

π

∫ 2π

0
f (x) cos(nx) dx,

bn = 1

π

∫ 2π

0
f (x) sin(nx) dx .

(F.7)

To prove it, we multiply both terms of (F.6) by cos(mx) dx (and then by sin(mx) dx)
and integrate between 0 and 2π making use of the orthogonality of the trigonometric
functions.

The conditions underwhich f (x) canbe expanded in aFourier series are extremely
large, and will not be analyzed here. It will be enough for us to say that, if f (x) is
absolutely integrable in 0 ≤ x ≤ 2π, the expansion (F.6) holds at any point of the
domain where it is continuous and derivable. It is also easy to prove that, if f (x)

is an even function, i.e., f (x) = f (−x), the trigonometric series reduces to a series
of only cosines, as the coefficients bn cancel out. If the function is odd instead,
f (x) = − f (−x), the series has only sinuses, because all the coefficients an vanish.
If we write the Kepler equation in the form:

E − M = e sin E, (F.8)

the function E − M is periodic of period 2π with respect to M , absolutely integrable
and indefinitely derivable in the interval 0 ≤ M ≤ 2π, and also odd (as it is a sine
function). Therefore:

E − M =
∞∑

n=1

bn sin(nM), (F.9)

with:

bn = 1

π

∫ 2π

0
(E − M) sin(nM) d M. (F.10)

9 This means that for every ε > 0, it exists an index n such that, for all points x within the interval
0 ≤ x ≤ 2π, the partial sum fk(x), with k ≥ n, satisfies the condition | fk(x) − f (x)| < ε.



296 Appendix F: On the Solution of Kepler’s Equation

Integration by parts of (F.10) gives:

bn = 1

nπ

∫ 2π

0
(d E − d M) cos(nM) = 1

nπ

∫ 2π

0
cos(nM) d E =

= 1

nπ

∫ 2π

0
cos

(
n(E − e sin E)

)
d E . (F.11)

We see that bn is function of n (which is a wave number) and of the eccentricity e
only. We can then put:

bn = 2

n
Jn(ne), (F.12)

where:

Jn(y) = 1

2π

∫ 2π

0
cos[nx − y sin x] dx, (F.13)

is a Bessel function of the first order type n (see Appendix N.3). Consequently,
Kepler’s equation becomes:

E = M +
∞∑

n=1

2

n
Jn(ne) sin(nM), (F.14)

which has an explicit form for E and converges for any e < 1.

F.3 Numerical Solutions: An Iterative Method

The expansions of the Kepler equation considered above have the advantage of the
analytical form, but they are not very convenient in purely numerical calculations,
for which a Newton iterative method is more friendly. Consider the sequence:

E1 = M + e sin M

E2 = M + e sin E1

E3 = M + e sin E2 (F.15)

· · · · · · · · · · · · · · · · · ·
En+1 = M + e sin En

· · · · · · · · · · · · · · · · · ·

We will prove that it converges to the value E = M + e sin E . In fact, subtracting
from (F.1) the first of (F.15) and dividing both terms by (E − M), we obtain:
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E − E1

E − M
= e

sin E − sin M

E − M
=

= e
2

E − M
cos

(
E + M

2

)
sin

(
E − M

2

)
. (F.16)

Since: ∣∣∣∣cos E + M

2

∣∣∣∣ ≤ 1, and

∣∣∣∣∣∣∣
sin

E − M

2
E − M

2

∣∣∣∣∣∣∣
≤ 1, (F.17)

we have: ∣∣∣∣ E − E1

E − M

∣∣∣∣ ≤ e. (F.18)

Similarly, it is easy to show that:

∣∣∣∣ E − E2

E − E1

∣∣∣∣ ≤ e. (F.19)

The product of (F.18) with (F.19) gives the inequality:

∣∣∣∣ E − E2

E − M

∣∣∣∣ ≤ e2, (F.20)

which generalizes to: ∣∣∣∣ E − En

E − M

∣∣∣∣ ≤ en. (F.21)

But, since |E − M | = e| sin E | ≤ e, then:

|E − En| ≤ en+1. (F.22)

Therefore, for each value of the eccentricity 0 ≤ e < 1, it results:

lim
n→∞ |E − En| = 0. (F.23)

The convergence of this iterative procedure is fast for small values of the eccentricity.
For example, in order to obtain a precision of 7 digits, the condition en+1 ≤ 10−7 must
be satisfied. This sets the following upper limits to the iterations: n = 6 for e = 0.1,
n = 22 for e = 0.5, n = 152 for e = 0.9, and n = 1.6 × 106 if e = 0.99999. We
then conclude that 11 iterations are sufficient to obtain the required accuracy for
any planet in the Solar System (e < 0.25). Note however that this estimate of the
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Fig. F.2 Number n of iterations needed to solve Kepler’s equation (F.1) with an accuracy of 7
digits as a function of the ellipticity e, for M = π/2. The continuous curve plots the equation:
10−7 = en−1 (here e is the eccentricity), providing an upper limit to the number of iterations
required. The histogram shows the value of n for a discrete set of values of e, computed by direct
numerical iteration of the sequence (F.15) for the same level of accuracy and for M = π/2

upper limit of the numbers of iterations diverges with increasing ellipticity, as it is
shown in Fig. F.2, where the red points correspond to direct estimates by numerical
calculations.



Appendix G
Bohr’s Model for the Hydrogen Atom

George Wald

A physicist is an atom’s way of knowing about atoms.

This appendix presents an application of the two-body problem to a context outside
celestial mechanics. We consider here the first attempts to model the structure of the
atom as it emerged from Thomson’s10 and Rutherford’s11 discoveries. Obviously,
the interpretative effort of the numerous evidences collected in laboratory by spec-
troscopists initially focused on the simplest physical case, that of hydrogen, in which
a single negatively charged particle, the electron, was imagined to circulate around
a positively charged nucleus, consisting of a single proton. The first model capable
of accounting for appearances was developed in 1913 by Niels Bohr.12

Based on ad hoc hypotheses inserted in a substrate of classical physics, Bohr’s
model was able to reproduce the empirical formula of Rydberg.13 It was only the first
step of a path that in a few years would contribute to the birth of a new, revolutionary
vision of the physical world, quantum mechanics [7, 8].

10 Joseph Thomson (1856–1940): British physicist of Scottish origin, known for having discovered
the electron.
11 Ernest Rutherford, (1871–1937): New Zealand physicist, student of Thomson, known as the
father of nuclear physics. He was the precursor of the orbital theory of the atom. He won the Nobel
Prize for chemistry in 1908.
12 Niels Bohr (1885–1962): Danish physicists and mathematicians, one of the most influential
scientists of the XX century, he gave essential contributions to knowledge the atomic structure and
to quantum mechanics. Nobel Prize in physics in 1922.
13 Johannes Rydberg (1854–1919): Swedish physicist and mathematician, best known for the gen-
eralization, in 1888, of the formula found by the Swiss teacher Johann Balmer (1825–1898). The
latter was used to predict the wavelengths λH of the lines of the hydrogen spectrum appearing in

the visible domain: λm = B m2

m2 − n2 , with B = 3645.6Å. The two integers are n = 2 and m > n.
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G.1 Bohr’s Model of the Hydrogen Atom

Modelled on an intuition of Rutherford, Bohr’s atom is seen as a two-body system in
which gravitational interaction is replaced by the preponderant14 electric interaction
between the nuclear proton and the electron, also attractive because it is exerted
between two charges of opposite sign. Bohr introduced three fundamental postulates:

1. The electron revolves around the central nucleus on circular orbits (the general-
ization to the elliptical orbits is due to Sommerfeld15 to take into account some
failures of the theory regarding, for example, the reproduction of helium spec-
tra). These orbits can only take quantized angular momentum values: L = n� =
nh/2π, where h is the Planck16 constant and n the principal quantum number.
Consequently, the electron energy is also quantized, and the allowed electronic
orbits have predetermined radii.

2. Contrary towhat is expected fromMaxwell’s equations for the acceleratedmotion
of an electric charge,17 electrons do not radiate energy in their orbital motion. In
other words, the allowed orbits are also stable.

3. When an electron jumps from one ‘permitted’ orbit to another, the difference in
energy between the two, �E , is managed by the emission or absorption (depend-

ing on the sign of�E) of a quantum of light (photon) with a frequency ν = |�E |
h .

Three different equations derive from the previous hypotheses.

1. The energy of the electron in orbit is the sum of its kinetic Ekin and potential the
E pot energy:

E = Ekin + E pot = 1

2
mev

2 − ke2

r
, (G.1)

where me and e are the mass and charge of the electron, v is its velocity, r the
radius of the orbit, and k = 1/(4πε0), with ε0 the dielectric constant of vacuum.

2. The angular momentum is quantized, that is:

L = mevr = n
h

2π
= n�. (G.2)

3. The Coulombian force that keeps the electron in the orbit must be the same as the
centripetal one:

14 If we compare the gravitational force exerted by a proton on an electron to the electrostatic force

(Coulombian) at equal distance, we have: Gm pme

ke2
= 4 × 10−40.

15 Arnold Sommerfeld (1868–1951): German theoretical physicist. Great master, he had among his
students Werner Heisenberg, Wolfgang Pauli, Peter Debye, and Hans Bethe.
16 Max Planck (1858–1947). German physicist, he gave substantial contributions to theoretical
physics. He also originated the quantum theory. Nobel prize in physics in 1918.
17 Classical electrodynamics predicts that, because of the centripetal acceleration, an electron on a
circular orbit with period P radiates light at a frequency 2π/P . Since its total energy is proportional
to −1/r

(
cf. (2.66)

)
, the the orbital radius should progressively decrease.
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Fig. G.1 Bohr’s model of
hydrogen atom. The
electronic orbits are not in
scale

ke2

r2
= mev

2

r
. (G.3)

After some manipulation of the above formulas, we obtain the following expres-
sion for the energy of the n-th level:

En = − mee4

8h2ε20

1

n2
= E0

n2
, (G.4)

where:

E0 = − mee4

8h2ε20
= −13.6 eV, (G.5)

(1 eV = 1.60218 × 10−19 J). So, the lowest energy level (n = 1) is around
−13.6 eV, the next higher level (n = 2) is at −3.4 eV, and so on. Since the sys-
tem is bound, these energies are negative. In the case of positive energies, we speak
of an ionized atom as in this case the electron is made free, in formal analogy with the
results obtained in Sect. 2.7. The change of the energy levels produces the emission
(m > n) or the absorption (m < n) of a photon with frequency ν according to the
formula:

�Enm = |En − Em | = hν = E0

(
1

n2
− 1

m2

)
; (G.6)

see Fig.G.1.



Appendix H
The Variation of Constants

Joseph Louis Lagrange

Newton was the greatest genius that ever existed, and the
most fortunate, for we cannot find more than once a system
of the world to establish.

We present here the method of the variation of constants,18 also called variation of
parameters, in the context of the theory of differential equations. Given the ordinary
differential equation:

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = r(x), (H.1)

let us assume that we know two independent solutions, y1(x) and y2(x), of the
associated homogeneous equation:

d2y

dx2
+ p(x)

dy

dx
+ q(x) y = 0. (H.2)

The postulated independence ensures that the Wronskian determinant19 differs from
zero, that is: ∣∣∣∣∣∣

y1(x) y2(x)

dy1
dx

dy2
dx

∣∣∣∣∣∣ �= 0. (H.4)

18 This method is also known as variation of parameters and it was invented by Euler in 1748 with
applications to planetary perturbations and, starting 18 years later, it was perfected by Lagrange.
19 If n functions g1, . . . , gn of real of complex variable admit n − 1 derivatives in a given interval,
there we may define the Wronskian function, after the Polish mathematician Josef Maria Hoene-
Wroński (1776–1853):
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In this case, the general integral of the homogeneous equation (H.2) is given by a
linear combination of y1 and y2:

y(x) = c1 y1(x) + c2 y2(x), (H.5)

where c1 and c2 are arbitrary constants.20

The strategy of themethod of the variation of constant consists in finding a solution
of the equation (H.1) in the form (H.5), but assuming that the quantities ci , instead
of being constants, are functions of x :

y(x) = c1(x) y1(x) + c2(x) y2(x). (H.6)

The first derivative of (H.6):

dy

dx
= c1

dy1
dx

+ c2
dy2
dx

+ dc1
dx

y1 + dc2
dx

y2, (H.7)

contains 4 terms, but we can simplify it by noting that there are only one unknown
function, y, and two conditions. For example, we can arbitrarily impose that:

dc1
dx

y1 + dc2
dx

y2 = 0, (H.8)

with which Eq. (H.7) simplifies in:

dy

dx
= c1

dy1
dx

+ c2
dy2
dx

. (H.9)

We now calculate the second derivative of y from (H.9) and replace in the original
Eq. (H.1) together with the first derivative (H.9). After proper groupings we obtain:

(H.3)W g, . . . , gn �

g1(x) g2(x) g3(x) · · · gn(x)
g1(x) g2(x) g3(x) · · · gn(x)
· · · · · · · · · · · · · · ·
g
(n� 1)
1 (x) g

(n� 1)
2 (x) g

(n� 1)
3 (x) · · · g

(n� 1)
n

.

TheWronskian is useful for determiningwhether a set of functions is linearly independent in a given
interval. If it does not vanish identically, then the associated functions are linearly independent; if,
on the other hand, they are linearly dependent, then their Wronskian is equal to zero (but the reverse
is not true).
20 Consider, for instance, the forced harmonic motion: ẍ(t) − ω2x(t) = f (t), where f (t) is some
external periodic force. It is well known that sin(ωt) and cos(ωt) are independent solutions of the
associated homogeneous equation: ẍ(t) − ω2x(t) = 0, as it can be proven by direct substitution.
The general solution is then: x(t) = c1 sin(ωt) + c2 cos(ωt).
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c1

(
d2y1
dx2

+ p
dy1
dx

+ q y1

)
+ c2

(
d2y2
dx2

+ p
dy2
dx

+ q y2

)
+

+ dc1
dx

dy1
dx

+ dc2
dx

dy2
dx

= −r(x). (H.10)

Since y1 and y2 are solutions of (H.2), it is evident that the expressions in the brackets
of (H.10) are zero. Therefore, the equation reduces to:

dc1
dx

dy1
dx

+ dc2
dx

dy2
dx

= r(x), (H.11)

with which the condition (H.8) we imposed is associated. Thus we have a system
of two equations (H.8) and (H.11) in the unknowns dc1/dx and dc2/dx . It admits
a solution since the determinant of the system coincides with the Wronskian (H.4),
which is different from zero by hypothesis. Thus, the solution of (H.1) reduces to
finding c1(x) and c2(x) by means of two quadratures.

Now consider a system of differential equations of order n:

dxk

dt
= fk(x1, x2, . . . , xn, t) (k = 1, . . . , n), (H.12)

which defines n functions xk(t) of the independent variable t . Let us assume that we
know the general solution of this system. It will take the form:

xk = xk(t, c1, c2, . . . , cn) = xk(t, c) (k = 1, . . . , n), (H.13)

with n arbitrary constants ci (i = 1, . . . , n). We now modify the second terms of
(H.12) by adding n functions rk(x1, x2, . . . , xn, t), which in practice procure amodest
contribution collectively, when compared to the functions f . In other words, let us
consider the system of n equations:

dxk

dt
= fk(x1, x2, . . . , xn, t) + rk(x1, x2, . . . , xn, t). (H.14)

Once again we look for the solution of (H.14) through the solution (H.13) of (H.12),
but thinking of the ci as functions of the variable t . The derivative of xk becomes the
sum of n + 1 terms:

dxk

dt
= ∂xk

∂t
+

n∑
i=1

∂xk

∂ci

dci

dt
. (H.15)

Replaced in (H.14), we have:
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∂xk

∂t
+

n∑
i=1

∂xk

∂ci

dci

dt
= fk

(
x1(t, c), x2(t, c), . . . , xn(t, c), t

) +

+ rk
(
x1(t, c), x2(t, c), . . . , xn(t, c), t

)
(k = 1, . . . , n), (H.16)

which leads to an obvious reduction. In fact, it must be satisfied if the rk functions
are canceled and if the ci are reduced to constants; in this case (H.16) is identified
with (H.12). In conclusion, we obtain that the ck functions must satisfy the following
n conditions:

n∑
i=1

∂xk

∂ci

dci

dt
= rk

(
x1(t, c), x2(t, c), . . . , xn(t, c), t

)
, (H.17)

for eachvalue of the index k between1 andn.Weconsider the (H.17) as a system in the

unknowns dci (t)/dt , which admit a solution since the functional determinant

∣∣∣∣∂xi

∂c j

∣∣∣∣
is necessarily different from zero. If not, the (H.13) would not represent the general
integral of the (H.12), contrary to the hypothesis. In conclusion, the n equations
(H.17) can be placed in the form of a system of differential equations of order n:

dck

dt
= ck(c1, c2, . . . , cn, t) (k = 1, . . . , n), (H.18)

whose solution determines, together with arbitrary initial conditions, the n functions
ck that we were looking for.

It is worth noting that the integration method shown above can also be applied to
the Eq. (H.1) rewritten in the form:

dy

dx
= y′,

dy′

dx
= −p y′ − q y + r.

(H.19)



Appendix I
Lagrange Multipliers

Georg Cantor

In mathematics the art of proposing a question must be
held of higher value than solving it.

Let f (x1, x2, . . . , xn) be a derivable function of n free variables xi . It is known
that the extremes (maxima and minima) of f are provided by the solutions of the
system constructed by canceling all the first n partial derivatives: ∂ f/∂xi = 0, for
i = 1, . . . , n. If we introduce m < n constraints of the type g j (xi ) = 0, the search
for the extremes of f requires the elimination of m of the n independent variables.
For example, let us look for the maximum of the function: f = x1x2, in the presence
of the constraint g = x1 + x2 − 2a = 0. We have:

f = x1 (2a − x1) = 2ax1 − x2
1 ,

∂ f

∂x1
= 2a − 2x1 = 0,

(I.1)

hence x1 = a, and then x2 = x1 = a. The result illustrates the well-known property
of the square with the largest area f for a same perimeter length 4a (given by g).

But replacements are not always as simple. Sometimes they give rise to very labo-
rious or even impractical calculations; for example, if the constraints are expressed by
transcendent functions. However, there is an elegantmethod, developed byLagrange,
that removes some of the difficulties. It does not require substitutions of variables
and therefore does not destroy any symmetries of the function f , if any. The basic
idea is to find the points where ∇ f is parallel to ∇gi . Let us have a closer look to it.

Given the function f (xi ) (i = 1, n) constrained by m relations21 g j (xi ) = 0, we
build the auxiliary function, named Lagrangian:

21 Note that, if gi (x) = ci , where ci = const �= 0, we can always rewrite: g′
i (x) = gi (x) − ci = 0.
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G(xi ) = f (xi ) +
m∑

j=1

λ j g j (xi ). (I.2)

The auxiliary variables λi are called Lagrange multipliers. They must be eliminated
from the system: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂G
∂x1

= ∂ f
∂x1

+
m∑

j=1

λ j
∂g j

∂x1
= 0,

· · · · · · · · · · · · · ·
∂G
∂xn

= ∂ f
∂xn

+
m∑

j=1

λ j
∂g j

∂xn
= 0,

(I.3)

which thus provides the extremes of f .
Let us solve oncemore the problem of the rectangle ofmaximum area given above

using Lagrange multipliers. We have:

G(x1, x2) = x1x2 + λ(x1 + x2 − 2a), (I.4)

from where:

dG

dx1
= x2 + λ = 0,

dG

dx2
= x1 + λ = 0.

(I.5)

The elimination of λ gives x1 = x2 as above.



Appendix J
The Two-Body Problem Applied to Visual
Binary Orbits

Marcus Aurelius, Meditations

Dwell on the beauty of life. Watch the stars, and see your-
self running with them.

Let us consider an isolated, gravitationally bound system of two stars with a large
enough physical separation to prevent any effects due to the finite sizes of the objects
(which might require additional terms in the expression of the potential; cf. Chap.
5). With these assumptions the system can be treated as a two-body problem. Each
star, assimilated to a material point (Sect. 5.4), describes an elliptical orbit around
the other.

If the system is so close to the Earth that the two stars can be seen well apart,
we say they form a visual binary system. In this case the observer may trace the
apparent orbit of one of the two stars, usually the fainter (S2 in Fig. J.1), around the
other one (S1). This orbit is the projection of the true orbit on the plane tangent to the
celestial sphere at the position of the binary system. It can be sampled by measuring,
at different epochs ti , the angular separation22 ρ(ti ) and the position angle23 θ(ti ) of
the vector connecting S1 to S2.

In this appendix we will study how to extract graphically the parameters of the
true orbit from the projected orbit noting that, since the latter lies on the plane of the
sky which is orthogonal to the line of sight, the projection is also orthogonal. The
exercise no longer has a practical use but has some educational content.

To begin, let us consider two non-coincident planes, π and π′, and call the line of
nodes their intersection (Fig. J.2). We say that the orthogonal projection of a point P
of π onto the plane π′ is the point P1 intercepted by the perpendicular to π′ passing

22 The physical separation requires the knowledge of the distance to the binary system.
23 The position angle is the angle that a vector on the plane of the sky forms with the direction of
north, counted eastwards.
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310 Appendix J: The Two-Body Problem Applied to Visual Binary Orbits

Fig. J.1 Angular separation ρ and position angle θ of the fainter star S2 of a visual binary system
with respect to the brighter one S1, measured on the plane of the sky at a given epoch

Fig. J.2 Orthogonal projections on the plane of the sky

through P . The orthogonal projection of any figure, plane or solid, is the orthogonal
projection of all its points.

We recall some properties of orthogonal projection. The tangents to the curves
are conserved (i.e., their projection is tangent to the projected curve) and the parallel
lines project into parallel lines. Ratios of the lengths of parallel segments and of the
areas of coplanar closed surfaces are also conserved. Every triangle can be positioned
in such a way that the relative shadow below an orthogonal projection is equilateral.
Furthermore, the medians of a triangle are projected into the medians of the image
triangle. Thebarycenter of a triangle24 projects into the center of gravity of the triangle
of the corresponding projected image. Spheroids project into ellipses (or circles, in
the degenerate case). Ellipses project into ellipses, which turn into circles if the line
of nodes is parallel to the one of the main axes of the ellipse and the inclination
is properly chosen. The center of an ellipse is always conserved in projection, but
usually the foci do not project into those of the projected image unless the line of the
nodes is parallel to one of the main axes.

24 The barycenter of a triangle is the point of intersection of its medians, i.e., the segments joining
each vertex with the midpoint of the opposite side.
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Fig. J.3 Apparent positions of the compact companion Sirius B around the giant star Sirius A
(black dot), together with the best fitting apparent elliptical orbit. The shift of the apparent position
of primary star relative to the focus of the apparent ellipse (cross) is evident. See H.E. Bond et al,
The Astrophysical Journal, 840, 70B, 2017. Courtesy of H.E. Bond

Fig. J.4 Apparent orbit of a binary system. Notice that the primary star does not occupy the focus
of the ellipse

Going back to our visual binary system, we assume that the apparent orbit of S2
has been duly sampled and the positional data best-fitted by an ellipse (cf. Sect.O.1
and see Fig. J.3). In fact, since the apparent orbit is the projection of an ellipse, it
must itself be an ellipse on the plane of the sky that also contains the projection of
S1 (usually distinct from each of the two foci, although it is itself a focus of the true
orbit).

To reconstruct the true orbit graphically, we begin by noting that the chord of
the projected ellipse containing the center C and the point S1 is the projection of
the major axis of the true orbit (Fig. J.4). Then,

(
C S1/C A1

)
is the measure of the

eccentricity e.
In addition, the bisector of the chords parallel to C A1 (Fig. J.5) is the projection

of the normal to the major axis of the true orbit, i.e., it contains the projection of the
minor axis. Tracing the parallel to this latter passing through one of the projections
of the true foci (Fig. J.5), we can find a point of the projection of the pedal circum-
ference (see Sect. 2.6.1) using the proportion, valid for the true orbit and therefore
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Fig. J.5 Binary system: determination of the projection of the minor semi-axis of the true orbit

Fig. J.6 Binary system: identification of a point of the projection of the pedal circumference

also for the projected one25:
(
S1R1/S1R2

) = √
1 − e2. Since the ellipse which is

a projection of the pedal circle also passes through A1 and A2, we have the three
distinct points needed to draw it (Fig. J.6); of course, this procedure does not account
for measurement errors.

The major axis of this ellipse, N1N2, coincides with the line of nodes, i.e., the
direction along which the lengths are preserved. In this way we also have the angular
value of the semi-major axis of the true orbit a = C N1 = C N2 and the inclination
i = arcsin

(
C B/C N1

)
(Fig. J.7).

Once the period P is known (it is measured directly over a complete rotation,
whether this is possible, or computed from the time taken to cover a true arc of
orbit) and the distance d of the system from the Earth (which is generally hard to
determine), the third Kepler law in the form (2.89) provides the sum of the masses
of the two stars. The determination of the individual masses requires some other
condition. One can resort, for example, to the estimate of the mass ratio provided by
the spectroscopic types of the two stars. But this topic goes beyond our scope.

25 The chord of an ellipse perpendicular to the major axis and passing through one focus is called
the ‘latus rectum’ (perpendicular side). It is easy to prove that its length is: � = b2/a = a(1 − e2).
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Fig. J.7 Binary system: construction of the pedal circumference and determination of the line of
nodes



Appendix K
Planarity of the Stationary Solution of the
3-Body Problem

Lev Tolstoy, War and peace

The two most powerful warriors are patience and time.

Wewant to show that the stationary solutions of the 3-body problem are planar. It will
be enough to prove it for the triangular solutions, as the property is obvious for the
collinear solutions because, as we already know (Sect. 3.1.1), in this configuration
the forces are evidently central.

Let S be the plane containing the three (not aligned) points at the generic epoch
t◦. We adopt an orthogonal Cartesian reference system with origin at the (fixed)
barycenter B, with axes x and y belonging to S, and assume that it is rigidly connected
to the threemassive points (for instance, the x-axis contains one of the three points). It
is apparent that the co-moving system B[x, y, z] is not inertial. Let ri = ρ(t)

[
x◦

i i +
y◦

i j
]
be the barycentric radius vector of the i-th point; the superscript indicates that

the variable is taken at t◦. As usual, i and j are the unit vectors of the axes x and y.
Relative velocity and acceleration of Pi in this system are:

vi = ρ̇(t)
[
x◦

i i + y◦
i j
] = ρ̇(t) r◦

i , (K.1a)

dvi

dt
= ρ̈(t) r◦

i ; (K.1b)

the resulting force is instead:

fi

mi
= Gm j

r3i j

(
r j − ri

)+ Gmk

r3ik

(
rk − ri

) = 1

ρ2(t)

(
f ◦
i x i + f ◦

iy j
)
, (K.1c)

with i �= j �= k = 1, 2, 3, where f ◦
i x and f ◦

iy are the components of fi/mi at t◦.
Finally, calling −→ω (ωx ,ωy,ωz) the vector of the angular velocity of the reference
system B[x, y, z] relative to a concentric inertial system, the second principle of
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dynamics applied to the non-inertial system (Appendix D), using the (C.8k), gives
the equation:

dvi

dt
+ 2−→ω × vi + −→ω (ri · −→ω )− riω

2 + −̇→ω × ri = fi

mi
. (K.2)

With the (K.1), the component along z is:

2ρ̇
(
ωx y◦

i − ωy x◦
i

)+ ρωz
(
ωx x◦

i + ωy y◦
i

)+ ρ
(
ω̇x y◦

i − ω̇y x◦
i

) = 0. (K.3)

Factorizing x◦
i and y◦

i , it is:

[
− 2ρ̇ωy + ρ

(
ωzωx − ω̇y

)]
x◦

i +
[
2ρ̇ωx + ρ

(
ωzωy + ω̇x

)]
y◦

i = 0. (K.4)

We see that the coefficients in the square brackets are functions of time and indepen-
dent of the index i . Denoting them as p(t) and q(t) respectively, we have:

p(t)

q(t)
= − y◦

i

x◦
i

; (K.5)

this is the necessary condition for collinearity. But we have assumed that the three
points Pi form a triangle. The (K.5) is compatible with this hypothesis only if the
functions p(t) and q(t) vanish identically, that is, if:

2ρ̇ωx = −ρ
(
ωzωy + ω̇x

)
, (K.6a)

2ρ̇ωy = ρ
(
ωzωx − ω̇y

)
. (K.6b)

Multiplying by ωx and ωy respectively and summing up, we obtain:

2ρ̇

ρ
= −ωx ω̇x + ωyω̇y

ω2
x + ω2

y

, (K.7)

from which, by a quadrature:

ω2
x + ω2

y = C

ρ2
, (K.8)

where C is an integration constant.
Similarly, we project the (K.2) on the x and y axes, obtaining:

ρ̈x◦
i − 2ωz ρ̇y◦

i + ωxρ
(
x◦

i ωx + y◦
i ωy

)+
− ρx◦

i

(
ω2

x + ω2
y + ω2

z

)− ω̇zρy◦
i = f ◦

i x

ρ2
, (K.9a)
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ρ̈y◦
i + 2ωz ρ̇x◦

i + ωyρ
(
x◦

i ωx + y◦
i ωy

)+
− ρy◦

i

(
ω2

x + ω2
y + ω2

z

)+ ω̇zρx◦
i = f ◦

iy

ρ2
, (K.9b)

and, by factorizing:

[
ρ̈ − ρ

(
ω2

y + ω2
z

)]
x◦

i −
[
2ωz ρ̇ + ρ

(
ω̇z − ωxωy

)]
y◦

i = f ◦
i x

ρ2
, (K.10a)

[
2ωz ρ̇ + ρ

(
ωxωy + ω̇z

)]
x◦

i +
[
ρ̈ − ρ

(
ω2

x + ω2
z

)]
y◦

i = f ◦
iy

ρ2
. (K.10b)

Again, the square brackets contain functions of time. Now, the system of three equa-
tions that we obtain from (K.10a) for the three values of the index i is linear and at
constant coefficients if both terms are multiplied by ρ2. Therefore, the expressions
within square brackets must be constant too. The same argument applies to (K.10b).
In conclusion, the difference between the first term in the square brackets in (K.10a)
and the second in (K.10b), once divided by ρ2, must also be a constant:

ω2
x − ω2

y = A

ρ3
, (K.11a)

and so the difference between the second of (K.10a) and the first of (K.10b), again
divided by ρ2:

2ωxωy = B

ρ3
. (K.11b)

We can use the complex notation:

ωx ± ωy = A ± i B

ρ3
, (K.11c)

with modulus:

ω2
x + ω2

y = (A2 + B2)1/2

ρ3
= D

ρ3
. (K.11d)

By the comparison with (K.8):

ρ(t) = C

D
= const, (K.12)

unless both C and D are zero; and this is precisely the case! In fact, if ρ = const,
ωx and ωy are also constant and, according to (K.6a) and (K.6b), ωz = 0. But then,
choosing properly the coordinate system, it can be even made that ωy = 0, with
which, from (K.9a), it is also fi x = 0, and therefore the three points are aligned,
contrary to our starting hypothesis.
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In conclusion,C = D = 0 implies thatωx = ωy = 0. This proves that the plane S
containing the three points rotates on itself (with angular velocity −→ω = ωzk); hence
its normal is fixed in space (remember the plane of motion contains the barycenter
which by assumption is fixed).



Appendix L
A Simplified Approach to Gravitational Impact

Sun Tzu, The art of war

Appear weak when you are strong, and strong when you
are weak.

It is known that the heliocentric velocity vector of a minor body in the Solar System
can be modified by close gravitational interaction with a major planet to the point
that the orbit can change from bound to unbound and vice versa. For instance, these
interactions are held responsible for the formation of the families of short period
comets (P < 200 years).

To understand the mechanism of the phenomenon (three-body impact), which is
the basis of the so-called gravity assist commonly used to accelerate spacecrafts,26

we consider here a simplified model of interaction.
Assume that the small body C of negligible mass mc revolves around the Sun

in an unperturbed elliptical orbit with semi-major axis ac, ellipticity ec, and angular
momentum hc, coplanar to the orbit of Jupiter (mass M�). In other words, we delib-
erately ignore the gravitational attraction by all massive bodies in the Solar System
other then the Sun, and treat the motion of C as a pure two-body problem at all helio-
centric distances rc ofC from the Sun except inside a quasi-spherical surface centered
at Jupiter that we call gravitational influence sphere (SOI hereafter). We can iden-
tify it with the smaller of the Hill surfaces that meet at the Lagrangian point L1 (see
Fig. 3.11). Hence, based on the first of the (3.77), the distance of L1 from Jupiter, thus
equal to the radius of SOI, is� 5.2 × 107 km, being a� = 5.2 AU = 7.8 × 1013 cm,

26 The application of gravity-assist to space travels between planets was considered for the first
time in 1918–19 by the Ukrainian engineer and mathematician Yuri Kondratyuk (1897–1942), who
also devised the strategy to reach the Moon, then adopted by NASA for the Apollo 11 mission
in 1969. The gravity-assist is also called Oberth maneuver in memory of Hermann Oberth, who
independently described it in 1927. The first use of gravity assist maneuver was in 1959 by the
Soviet probe Luna 3 which photographed the far side of the Moon.
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Fig. L.1 Three body impact
model

and M�/M� � 10−3 (Fig.L.1). This result is twice what would be obtained by
imposing that the radius of SOI is where the gravitational forces of the Sun and
Jupiter equalize (the reader will try to explain why there is such a large difference).
Inside the sphere of influence (see also Sect. 2.11) we pretend that the gravitational
attraction of the Sun on C becomes negligible compared to that of Jupiter and can
be ignored. This dichotomous scheme introduces a clear discontinuity in the field of
forces acting on C , but it is quite useful for understanding the phenomenon we are
dealing with.

Suppose now that the orbit of C intersects that of Jupiter and that, at the time
t◦, the body penetrates the planet SOI. Since the true anomaly of Jupiter varies
marginally during the crossing time �t (which is small compared to the orbital
period P�), the velocity of the planet can be assumed to be rectilinear and uniform,
with modulus V� ≈ √

G M�/a�. We are also legitimated to confuse the modulus
of the heliocentric distance r of each point within the SOI with the value of the
semimajor axis of Jupiter’s orbit, a�: therefore rc ≡ a� (since RSOI/a� � 0.07).

Now consider a Cartesian orthogonal system centered at the Sun, with axes x and
y coplanar to the orbits ofC and Jupiter, and assume that, at t◦, the axis x contains the
planet (Fig. L.1). According to the (2.68), the modulus of the heliocentric velocity
vin of C at the point where it penetrates the SOI of Jupiter (remember that rc = a�),
is:

vin =
√
2 G M�

[
1

a� − 1

2ac

]
, (L.1)

and has the following components:
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Fig. L.2 Three body impact
model: effects on the
velocity vector

(vin)x = vin sinα,

(vin)y = vin cosα,
(L.2)

where the angle is that shown in Fig. L.2.
In our schematic impact model, when the body C enters the SOI, it starts to be

subject to the action of Jupiter only. Therefore its orbit is again a conic, but with a
new focus on Jupiter. It can be computed using, as initial conditions (at t◦), the radius
vector r′ = r − a� with modulus RSOI and the velocity whose components are:

(
v′

in

)
x = vin sinα,(

v′
in

)
y = vin cosα − V�.

(L.3)

Symmetry assures us that the velocitywithwhichC leaves the SOI of Jupiter, v′
out has

the same modulus of v′
in , |v′

out | = |v′
in|; but it will form a different angle (Fig.L.2).

Therefore, its components are:

(
v′

out

)
x = v′

in sin β,(
v′

out

)
y = v′

in cosβ,
(L.4)

At this point C leaves the SOI. Its velocity with respect to the Sun must be that
relative to Jupiter plus the velocity of the planet with respect to the Sun:

(vout )x = v′
in sin β,

(vout )y = v′
in cosβ + V�.

(L.5)

Figure L.2 helps us to understand better the meaning of this qualitative digression.
We start from the velocity vector vin relative to the Sun with which C meets the
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Fig. L.3 The trend of
Voyager 2 heliocentric
velocity showing the
consequences of the
gravitational assists with the
outer planets. The yellow
curve shows the escape
velocity for a Solar System
body. Credit: NASA

SOI of Jupiter. In order to obtain the input velocity of C relative to Jupiter, v′
in , we

subtract V� to vin , then rotate the resultant by an angle whose magnitude depends
on the parameters of the impact, and finally add V� to it, obtaining the velocity
vector relative to the Sun as it has been modified by the gravitational encounter. It is
apparent that in this way both the modulus of vin and it orientation (on the plane of
motion, given our assumptions) can be changed.

The problem can be usefully treat as an elastic collision, remembering that in this
case both kinetic energy and momentum are conserved (Fig. L.3).



Appendix M
The Brackets of Poisson and Lagrange

Siméon-Denis Poisson

Life is good for only two things, discovering mathematics
and teaching mathematics.

The Lagrangian and Hamiltonian formalism provides an elegant and fast way to
describe the equations of motion in the case of complex systems. The introduction
of some operators, such as those described in detail in this appendix, allows us to
further simplify this formalism.

M.1 Poisson Brackets

Let us consider the two functions: f (q, p, t) = f (q1, q2, . . . , qn, p1, p2, . . . , pn, t)
and g(q, p, t) = g(q1, q2, . . . , qn, p1, p2, . . . , pn, t). We denote by ( f, g) the oper-
ator:

( f, g) =
n∑

k=1

∂ f

∂ pk

∂g

∂qk
−

n∑
k=1

∂ f

∂qk

∂g

∂ pk
, (M.1)

which is called Poisson bracket. Using the definition, it is immediate to verify the
following identities:

( f, f ) = 0,

( f, g) = −(g, f ), (M.2)

( f1 + f2, g) = ( f1, g) + ( f2, g).

Equally direct, though more laborious, is the proof of the Jacobi identity:
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(
( f, g), h

)+ (
(h, f ), g

)+ (
(g, h), f

) = 0, (M.3)

where h is a third function of qk , pk , and t . It is simple to remember this formula
using of cyclic permutations rule. We start developing the expression

(
( f, g), h

)
:

(
( f, g), h

) =
n∑

j=1

n∑
k=1

∂2 f

∂ p j ∂ pk

∂g

∂q j

∂h

∂qk
+

n∑
j=1

n∑
k=1

∂2g

∂q j ∂ pk

∂ f

∂ p j

∂h

∂qk
+

−
n∑

j=1

n∑
k=1

∂2 f

∂q j ∂ pk

∂g

∂ p j

∂h

∂qk
−

n∑
j=1

n∑
k=1

∂2g

∂ p j ∂ pk

∂ f

∂q j

∂h

∂qk
+

−
n∑

j=1

n∑
k=1

∂2 f

∂ p j ∂qk

∂g

∂q j

∂h

∂ pk
−

n∑
j=1

n∑
k=1

∂2g

∂q j ∂qk

∂ f

∂ p j

∂h

∂ pk
+

+
n∑

j=1

n∑
k=1

∂2 f

∂q j ∂qk

∂g

∂ p j

∂h

∂ pk
+

n∑
j=1

n∑
k=1

∂2g

∂ p j ∂qk

∂ f

∂q j

∂h

∂ pk
. (M.4)

We represent the set of the four double summations which contain the second partial
derivatives of the function f by means of the auxiliary operator

(
f, (g, h)

)
:

(
f, (g, h)

) =
n∑

j=1

n∑
k=1

∂2 f

∂ p j ∂ pk

∂g

∂q j

∂h

∂qk
−

n∑
j=1

n∑
k=1

∂2 f

∂q j ∂ pk

∂g

∂ p j

∂h

∂qk
+

−
n∑

j=1

n∑
k=1

∂2 f

∂ p j ∂qk

∂g

∂q j

∂h

∂ pk
+

n∑
j=1

n∑
k=1

∂2 f

∂q j ∂qk

∂g

∂ p j

∂h

∂ pk
. (M.5)

It is apparent that, by permuting the index of the summations, the operator just defined
is symmetric with respect to the order of the functions within the square brackets,
that is: (

f, (g, h)
) = (

f, (h, g)
)
. (M.6)

Expanding this notation to the other four summations of (M.4) which contain the
second partial derivatives of the g function, we can put:

(
( f, g), h

) = (
f, (g, h)

)− (
g, ( f, h)

)
, (M.7)

and, adding to these the analogous expressions related to the brackets
(
(g, h), f

)
and(

(h, f ), g
)
, the identity (M.3) is immediately verified.

We now list some useful relations that follow directly from the definition (M.1):
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d

dt
( f, g) = (

d f

dt
, g) + ( f,

dg

dt
),

( f, qk) = ∂ f

∂ pk
, (M.8)

( f, pk) = − ∂ f

∂qk
,

where f is any function of qk , pk and t . Moreover:

(qk, qh) = 0,

(pk, ph) = 0, (M.9)

(pk, qh) = δkh =
{
0 if k �= h

1 if k = h,

where δkh is the Kronecker27 symbol. The relations (M.9) are called fundamental
Poisson brackets.

We conclude this section by proving the following theorem: for given m functions
gi (p, q, t) of 2n dynamic coordinates, if the function f (g1, g2, . . . , gm) does not
explicitly contain the coordinates and the moments, then:

(h, f ) =
m∑

j=1

(h, g j )
∂ f

∂g j
, (M.10)

where h is in turn a function of qk , pk and t . Indeed:

(h, f ) =
n∑

k=1

(
∂h

∂ pk

∂ f

∂qk
− ∂h

∂qk

∂ f

∂ pk

)
=

=
n∑

k=1

⎡
⎣ ∂h

∂ pk

m∑
j=1

(
∂ f

∂g j

∂g j

∂qk

)
− ∂h

∂qk

m∑
j=1

(
∂ f

∂g j

∂g j

∂ pk

)⎤
⎦ =

=
m∑

j=1

[
∂ f

∂g j

n∑
k=1

(
∂h

∂ pk

∂g j

∂qk
− ∂h

∂qk

∂g j

∂ pk

)]
, (M.11)

that is:

(h, f ) =
m∑

j=1

(h, g j )
∂ f

∂g j
. (M.12)

Similarly, it is immediately shown that:

27 Leopold Kronecker (1823–1891): German mathematician and logician.
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( f1, f2) =
m∑

i=1

m∑
j=1

(gi , g j )
∂ f1
∂gi

∂ f2
∂g j

, (M.13)

where f1(g1, g2, . . . , gm) and f2(g1, g2, . . . , gm).

M.2 Lagrange Brackets

We now introduce a second operator, which is called Lagrange bracket. Given two
functions f and g of 2n dynamic coordinates, and possibly of time, it is defined by
the expression:

[ f, g] =
n∑

k=1

∂ pk

∂ f

∂qk

∂g
−

n∑
k=1

∂qk

∂ f

∂ pk

∂g
. (M.14)

From the definition it immediately follows that:

[ f, f ] = 0,

[ f, g] = −[g, f ],
[qi , q j ] = 0, (M.15)

[pi , p j ] = 0,

[pi , q j ] = δi j .

Having said that, wewill prove the following theorem: the Lagrange bracket between
two constants of motion ai and a j :

[ai , a j ] =
n∑

k=1

∂ pk

∂ai

∂qk

∂a j
−

n∑
k=1

∂qk

∂ai

∂ pk

∂a j
, (M.16)

is independent of time and is a function of the constants themselves.28 To carry on
the demonstration, we derive the 2n Hamilton equations (4.45a) with respect to ai .
We obtain n pairs of expressions like:

∂

∂ai

(
dqk

dt

)
= ∂

∂ai

(
∂H

∂ pk

)
=

n∑
h=1

(
∂2H

∂qh∂ pk

∂qh

∂ai
+ ∂2H

∂ ph∂ pk

∂ ph

∂ai

)
,

∂

∂ai

(
dpk

dt

)
= ∂

∂ai

(
−∂H

∂qk

)
= −

n∑
h=1

(
∂2H

∂qh∂qk

∂qh

∂ai
+ ∂2H

∂ ph∂qk

∂ ph

∂ai

)
,

(M.17)

28 The theorem has a general validity; nowhere in the proof it occurs the condition that the functions
a are constants of motion.
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for each value of the index k. Denoting a second constant of motion with a j , we
multiply both terms of the first of (M.17) by−∂ pk/∂a j , and the second by ∂qk/∂a j ,
and then we add the products. Summing up the result with respect to the index k, we
obtain the expression:

n∑
k=1

[
∂

∂ai

(
dpk

dt

)
∂qk

∂a j
− ∂

∂ai

(
dqk

dt

)
∂ pk

∂a j

]
=

=
n∑

k=1

n∑
h=1

[
− ∂2H

∂qh∂qk

∂qh

∂ai

∂qk

∂a j
− ∂2H

∂ ph∂qk

∂ ph

∂ai

∂qk

∂a j
+

− ∂2H

∂qh∂ pk

∂qh

∂ai

∂ pk

∂a j
− ∂2H

∂ ph∂ pk

∂ ph

∂ai

∂ pk

∂a j

]
, (M.18)

whose second term is symmetric with respect to ai and a j . Consequently, it is zero
the difference between the first terms of (M.18) and the equation obtained from this
by inverting the index i with the index j , that is:

n∑
k=1

[
∂

∂ai

(
dpk

dt

)
∂qk

∂a j
− ∂

∂ai

(
dqk

dt

)
∂ pk

∂a j
+

− ∂

∂a j

(
dpk

dt

)
∂qk

∂ai
+ ∂

∂a j

(
dqk

dt

)
∂ pk

∂ai

]
= 0. (M.19)

Since this identity coincides with the total derivative with respect to the time of
(M.16), it proves the assumption.

M.3 Relations Between the Brackets of Poisson and
Lagrange

The two operators are so closely related that they can be considered one the opposite
of the other. To clarify this concept, we demonstrate that, for the set of 2n independent
functions fi of the variables qk , pk (k = 1, . . . , n), and t , the following identity holds:

2n∑
i=1

[ fi , f j ]( fi , fh) = δ jh . (M.20)

Applying the definitions (M.1) and (M.14) it results:
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2n∑
i=1

[ fi , f j ]( fi , fh) =

=
2n∑

i=1

n∑
k=1

n∑
m=1

(
∂ pk

∂ fi

∂qk

∂ f j
− ∂qk

∂ fi

∂ pk

∂ f j

)(
∂ fi

∂ pm

∂ fh

∂qm
− ∂ fi

∂qm

∂ fh

∂ pm

)
. (M.21)

In the development of the right-hand side there are four terms; the first can be written
in the form:

n∑
k=1

n∑
m=1

∂qk

∂ f j

∂ fh

∂qm

2n∑
i=1

∂ pk

∂ fi

∂ fi

∂ pm
=

n∑
k=1

n∑
m=1

∂qk

∂ f j

∂ fh

∂qm

∂ pk

∂ pm
=

=
n∑

k=1

n∑
m=1

∂qk

∂ f j

∂ fh

∂qm
δkm =

n∑
k=1

∂qk

∂ f j

∂ fh

∂qk
. (M.22)

The last of the four terms of (M.21) is identical to the first, except that qk is replaced
by pk and vice versa, while the other two terms do not contribute to the sum. It turns
out that:

2n∑
i=1

[ fi , f j ]( fi , fh) =
n∑

k=1

(
∂qk

∂ f j

∂ fh

∂qk
+ ∂ pk

∂ f j

∂ fh

∂ pk

)
= ∂ fh

∂ f j
= δ jh, (M.23)

which is what we wanted to prove.
In the remaining part of this section, we shall interpret the relations between

Poisson and Lagrange brackets in terms of matrices. Using 2n independent functions
fi (q, p, t) of n coordinates qk and n conjugate moments pk , it is possible to build
(2n)2 Poisson brackets. These can be arranged in the form of an array of order 2n:

‖A‖ =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

( f1, f1) ( f1, f2) . . . ( f1, f2n)

( f2, f1) ( f2, f2) . . . ( f2, f2n)

. . . . . . . . . . . .

( f2n, f1) ( f2n, f2) . . . ( f2n, f2n)

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
, (M.24)

which, owing to (M.2), is antisymmetric. Similarly, from the (2n)2 Lagrange brackets
we obtain the antisymmetric matrix:

‖A′‖ =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

[ f1, f1] [ f1, f2] . . . [ f1, f2n]
[ f2, f1] [ f2, f2] . . . [ f2, f2n]
. . . . . . . . . . . .

[ f2n, f1] [ f2n, f2] . . . [ f2n, f2n]

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
. (M.25)

The relation (M.23) proves that the two matrices are reciprocal; hence their product,
‖U‖ = ‖A‖ · ‖A′‖, is the unit matrix. So, between the elements of ‖A‖ and ‖A′‖,
there are the following relations:



Appendix M: The Brackets of Poisson and Lagrange 329

( fi , f j ) = 1

D′
∂D′

∂[ f j , fi ] ,

[ fi , f j ] = 1

D

∂D

∂( f j , fi )
,

(M.26)

where D and D′ are the determinants of ‖A‖ and ‖A′‖ respectively, and:

∂D′

∂[ f j , fi ] =
∂

2n∑
i=1

( f j , fi )|Fj,i |

∂[ f j , fi ] , (M.27)

with |Fj,i | first minor of ( f j , fi ).



Appendix N
Some Special Functions

Pierre Simon de Laplace

Nature laughs at the difficulties of integration.

We call special functions a whole set of real or complex functions of real or complex
variables, such as, for instance, the trigonometric functions, that have gained a proper
name and a more or less standardized notation in virtue of a wide range applications
in pure mathematics, statistics, and physics. Many, but not all, appear as solutions
of differential or integral equations. Here we list some classes of special functions
of interest for celestial mechanics, outlining their main characteristics (see [9] for an
complete presentation).

N.1 Gamma Function

The function� is the extension of the factorial to real or complex numbers.Often used
in statistics and to manipulate Legendre polynomials, fundamental in the description
of the gravitational potential, it is defined by the integral29:

�(z) =
∫ ∞

0
t z−1e−t dt, (N.1)

which, if the real part of z is positive, converges absolutely. Represented graphically
in Fig.N.1, the �(z) function turns into the usual definition of factorial for non-
negative integers z = n, as it is easily verified. Indeed:

29 The notation �(z) is due to Legendre.
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Fig. N.1 Gamma function

�(1) =
∫ ∞

0
e−t dt = lim

k→∞ −e−t
∣∣∣k
0

= 1, (N.2)

and, for all integers n > 0:

�(n + 1) = n �(n) = · · · = n! �(1) = n!, (N.3)

which is the application to n of the more general property:

�(z + 1) = z�(z), (N.4)

obtained integrating (N.1) by parts.
Alternative definitions of �(z) were provided by Euler and Weierstrass30 respec-

tively:

�(z) = lim
n→∞

n! nz

z (z + 1) · · · (z + n)
, (N.5)

and:

�(z) = e−γz

z

∞∏
n=1

(
1 + z

n

)−1
ez/n, (N.6)

where γ ≈ 0.5772 is the Euler-Mascheroni constant.31 By (N.5), we can now prove
the (N.4):

30 Karl Theodor Wilhelm Weierstrass (1815–1897): German mathematician, founder of modern
mathematical analysis.
31 Lorenzo Mascheroni (1750–1800): Italian mathematician and writer.
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�(z + 1) = lim
n→∞

n! nz+1

(z + 1) (z + 2) · · · (z + 1 + n)
=

= lim
n→∞

(
z

n! nz

(z + 1) (z + 2) · · · (z + n)

n

(z + 1 + n)

)
=

= z �(z) lim
n→∞

n

(z + 1 + n)
= z �(z). (N.7)

We report below some properties of the � function. Euler’s reflection formula is:

�(1 − z) �(z) = π

sin (πz)
, (N.8)

and the multiplication theorem:

�(z) �

(
z + 1

m

)
�

(
z + 2

m

)
· · · �

(
z + m − 1

m

)
=

=(2π)(m−1)/2 m(1−2mz)/2 �(mz), (N.9)

that, for m = 2, becomes the duplication formula:

�(z) �

(
z + 1

2

)
=

√
π

22z−1
�(2z). (N.10)

Some typical values of � are:

�(1/2) = √
π ≈ 1.772,

�(1) = 0! = 1,

�(3/2) =
√

π

2
≈ 0.886, (N.11)

�(2) = 1! = 1,

�(3) = 2! = 2.

N.2 Beta Function

The Beta function (Fig. N.2), also called Euler integral of first kind, is defined by the
integral:

B(x, y) =
∫ 1

0
t x−1(1 − t)y−1 dt, (N.12)

for �(x),�(y) > 0. It is symmetric:
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Fig. N.2 Beta function for y = 1, 2, 3, 4

B(x, y) = B(y, x), (N.13)

and can be written in the following ways:

B(x, y) = �(x) �(y)

�(x + y)
, (N.14a)

B(x, y) = 2
∫ π/2

0
sin2x−1 θ cos2y−1 θ dθ, (N.14b)

�(x) > 0, �(y) > 0

B(x, y) =
∫ ∞

0

t x−1

(1 + t)x+y
dt, (N.14c)

The definition of the function B can be suitably expanded by introducing the gener-
alized (incomplete) Beta function, where the definite integral of (N.12) is replaced
by an indefinite one:

B(x; a, b) =
∫ x

0
ta−1 (1 − t)b−1 dt. (N.15)
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Finally, we mention the regularized Beta function:

Ix (a, b) = B(x; a, b)

B(a, b)
. (N.16)

N.3 Bessel Functions

Defined by Daniel Bernoulli,32 the Bessel33 functions were generalized as solutions
of Bessel’s differential equation:

x2 d2y(x)

dx2
+ x

dy(x)

dx
+ (x2 − α2)y(x) = 0, (N.17)

whereα is a real or complex number. Special and interesting cases are obtained when
α is an integer n (or half-integer), then called order, as they appear in the solution to
Laplace’s equation (5.21) in cylindrical coordinates. Being a second order differential
equation, (N.17) gives two linearly independent solutions. We will obtain and study
two such solutions, indicatedwith Jn(x) andYn(x) respectively, that are calledBessel
functions of the first and of the second kind. They arewidely used in various problems
of wave propagation and static potentials, and also in the signal analysis [10]. Other
useful functions can be expressed simply through them.

N.3.1 Bessel Functions of the First Kind

We obtain Jn (Fig.N.3) by an indirect procedure, proving only at the end that it is a
solution of the differential equation (N.17). We develop the integral:

32 Daniel Bernoulli (1700–1782): Swiss mathematician and physicist belonging to a family of
scientists. Of Belgian origin, the dynasty of Bernoulli settled at Basel, Switzerland, at the end of
the XVI century. The mathematical genius manifested with the progenitor, Jakob Bernoulli (1654–
1705),who investigated the probability theory and the statistics. Son of Johann (1667–1748), Jakob’s
brother and a mathematician too, Daniel continued the studies of applied mathematics undertaken
by the uncle, towering in the field of fluid dynamics. He was the one calling in St. Petersburgh his
compatriot Euler, who was a student of his father. He is also known for the scarcely commendable
scientific and academic conflict with his father Johann.
33 FriedrichWilhelmBessel (1784–1846):Germanmathematician and astronomer, contemporary to
Gauss. Protected byOlbers, althoughwithout a university education, he could start a fast-track career
in astronomy. Thanks to Gauss, when just 26 years old he was appointed director of the Prussian
Observatory of Königsberg. There, with an instrument produced by Joseph von Fraunhofer, in 1838
he made the first determination of the annual parallax of a star (61 Cygni), beating his competitors:
the German Friedrich von Struve, director of the Dorpat Observatory in Tartu, Estonia, who was
following the star Vega, and the Scottish Thomas Henderson who looked at the star αCen from the
Cape of Good Hope Observatory.
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Fig. N.3 Bessel functions of the first kind

A = 1

2π

∫ 2π

0
e−i (n x−y sin x) dx, (N.18)

using Euler’s formula34

A = 1

2π

∫ 2π

0
cos

(
n x − y sin x

)
dx + i

2π

∫ 2π

0
sin
(
n x − y sin x

)
dx . (N.19)

By the substitution x = 2π − x ′, the integrand of the second integral at the right-hand
side of (N.19) becomes:

sin
(
n x − y sin x

) = sin
(
2 nπ − n x ′ + y sin x ′) =

= − sin
(
n x ′ − y sin x ′), (N.20)

showing that, for x ′ = 2π−x , it is equal and opposite to the same integrand as a
function of x . The sum between 0 and π is therefore cancelled by that made between
π and 2π. As a result, we get an expression equivalent to (F.13):

Jn(y) = 1

2π

∫ 2π

0
e−i (n x−y sin x) dx = 1

2π

∫ 2π

0
cos

(
n x − y sin x

)
dx . (N.21)

Now we rewrite (N.19) in the form:

34 Found by Euler in 1748, the the famous formula of the same name, “the most remarkable formula
in mathematics” according to Richard Feynman, is: eix = cos x + i sin x . With x = π you readily
get the famous Euler’s identity: eiπ + 1 = 0.
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Jn(y) = 1

2π

∫ 2π

0
e−i n x ei y sin x dx, (N.22)

which proves that Jn(y) is the coefficient of e−i n x in the Fourier expansion (cf.
Sect. F.2):

ei y sin x =
+∞∑

n=−∞
Jn(y) ei n x . (N.23)

By introducing the new variable:
z = ei x , (N.24)

from where:

2 i sin x = z − 1

z
, (N.25)

the expansion (N.23) takes the form:

exp

[
y

2

(
z − 1

z

)]
= eyz/2 e−y/2z =

+∞∑
n=−∞

Jn(y) zn. (N.26)

Therefore, Jn(y) is also the coefficient of zn in the power series expansion of negative
and positive powers of the function:

F(y, z) = eyz/2 e−y/2z =
( ∞∑

k=0

(y/2)k

k! zk

) ⎛
⎝ ∞∑

j=0

(−1) j (y/2) j

j ! z− j

⎞
⎠ =

=
∞∑

k=0

∞∑
j=0

(−1) j (y/2)k+ j

k! j ! zk− j . (N.27)

Finally, with the substitution n = k− j :

F(y, z) =
∞∑

n=−∞

∞∑
j=0

(−1) j (y/2)n+2 j

(n + j)! j ! zn =
+∞∑

n=−∞
Jn(y) zn. (N.28)

Note that the lower limit of the sum has been extended from k = 0 to n = −∞. This
is because the added terms are null, as they contain in the denominator the factorial
of a negative number that is infinite. The absence of terms with n + k < 0 can be
considered equivalent to the fact that the power series of y/2:

Jn(y) =
∞∑
j=0

(−1) j (y/2)n+2 j

(n + j)! j ! , (N.29)
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has only positive powers of y/2, as shown by the way we built the function F(y, z).
The characteristics of this latter function ensure that:

Jn(−y) = (−1)n Jn(y), (N.30a)

J−n(−y) = (−1)n Jn(y). (N.30b)

In turn they prove that:
J−n(−y) = Jn(y). (N.30c)

It follows from all these relations that it is not necessary to consider negative values
of the index n. For n > 0, the (N.29) gives:

Jn(y) = 1

n!
( y

2

)n ∞∑
j=0

(y/2)2 j

j ! (n + 1)(n + 2) · · · (n + j)
. (N.31)

The ratio between two consecutive terms of the series in (N.31) with index j and
j + 1 is:

R = −
( y

2

)2 1

( j + 1)(n + j + 1)
; (N.32)

its numerical value is less than unity for each value of y, as long as j is chosen
sufficiently large. So, based on d’Alembert’s criterion of the ratio for series with
positive terms, the series (N.31) is absolutely convergent for all values of y. It can
be equally shown that the series (N.28) for F(y, z) is absolutely convergent for each
value of y and z but z = 0 and z = +∞ (which are the poles of F in the complex
plane). Differentiating the Eq. (N.26) with respect to z:

y

2

(
1 + 1

z2

) +∞∑
−∞

Jn(y) zn =
+∞∑
−∞

n Jn(y) zn−1, (N.33)

and equating the coefficients of zn−1 in the two sides of this equality, we have:

y

2

[
Jn−1(y) + Jn+1(y)

] = n Jn(y). (N.34)

Again, by differentiating the (N.26), but this time with respect to y:

1

2

(
z − 1

z

) +∞∑
−∞

Jn(y) zn =
+∞∑
−∞

zn d Jn(y)

dy
, (N.35)

and equaying the coefficients of zn−1 on the two sides, we have:
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1

2

(
Jn−1(y) − Jn+1(y)

)
= d Jn(y)

dy
. (N.36)

From (N.34) and (N.36) we obtain:

Jn−1(y) = n

y
Jn(y) + d Jn(y)

dy
, (N.37a)

Jn+1(y) = n

y
Jn(y) − d Jn(y)

dy
. (N.37b)

By changing n in (N.34) with (n−1) and a second time with (n+1), it is:

Jn(y) + Jn−2(y) = 2 (n − 1)

y
Jn−1(y), (N.38a)

Jn(y) + Jn+2(y) = 2 (n + 1)

y
Jn+1(y), (N.38b)

or, with (N.37a):

Jn−2(y) =
(
2n (n − 1)

y2
− 1

)
Jn(y) + 2 (n − 1)

y

d Jn(y)

dy
, (N.39a)

Jn+2(y) =
(
2n (n + 1)

y2
− 1

)
Jn(y) − 2 (n + 1)

y

d Jn(y)

dy
. (N.39b)

This procedure, which can be iterated endlessly, shows that Jn+k , where the integer
k ≥ −n, can always be expressed as a linear combination of Jn(y) and d Jn(y)/dy,
through coefficients that are functions of the argument y.

Another important property of Bessel functions Jn(y) is that they are solutions of a
linear differential equation with non-constant coefficients. This equation is obtained
by differentiating the (N.36):

d2 Jn(y)

dy2
= 1

2

(
d Jn−1(y)

dy
− d Jn+1(y)

dy

)
. (N.40)

By replacing the derivatives of Jn−1 and Jn+1 through (N.36), we have:

d2 Jn(y)

dy2
= 1

4

(
Jn−2(y) − 2 Jn(y) + Jn+2(y)

)
, (N.41)

and, with the (N.39):

d2 Jn(y)

dy2
= −1

2
Jn(y) +

(
n2

y2
− 1

2

)
Jn(y) − 1

y

d Jn(y)

dy
, (N.42)

that is:
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Fig. N.4 Bessel functions of
the second kind

d2 Jn(y)

dy2
+ 1

y

d Jn(y)

dy
+
(
1 − n2

y2

)
Jn(y) = 0. (N.43)

Once multiplied by y2, this differential equation is identical to (N.17) and can be
used to define Bessel functions.

N.3.2 Bessel Functions of the Second Kind

These functions (see Fig. N.4) represent the second solution of the Eq. (N.17).
They are singular at x = 0 and can be obtained from the functions of the first kind
(Fig.N.5):

Yn(x) = Jn(x) cos(nπ) − J−n(x)

sin(nπ)
. (N.44)

The following relation holds:

Y−n(x) = (−1)nYn(x). (N.45)

N.3.3 Modified Bessel Functions

Bessel functions can also be defined when the variable x is complex. A very special
case is when x is purely imaginary. In this case the solutions of the Bessel equation
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Fig. N.5 Modified Bessel functions of the first and the second kind

are called modified Bessel functions, or hyperbolic Bessel functions, of the first and
the second kind:

In(x) = i−n Jn(i x), (N.46a)

Kn(x) = π

2

I−n(x) − In(x)

sin(nπ)
. (N.46b)

These two functions are linearly independent solutions of the equation:

x2 d2y

dx2
+ x

dy

dx
− (x2 + n2)y = 0. (N.47)

Compared to Bessel’s ordinary functions, which are oscillating functions of a real
argument, In and Kn are exponentially increasing and decreasing respectively.

N.4 Elliptical Integrals

An elliptic integral is any function f that can be expressed in the form:

f (x) =
∫ x

x0

r
(
t, p(t)

)
dt, (N.48)

where r is a rational function and p the square root of a polynomial of degree 3 or
4 with no repeated roots, and x0 is a constant. We consider here only the particular
cases of the the elliptic integrals used in this book.
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It is easy to meet the elliptical integral even in the two-body problem since the
length of an ellipse cannot be expressed through elementary functions.35 Taking
into account the parametric expression (2.50) for an ellipse with major and minor
semi-axes a and b, the length of the curve, L = ∫

dl = ∫ √
(dx)2 + (dy)2, is:

L =
∫ 2π

0

√(
dx

dθ

)2
+
(

dy

dθ

)2
dθ = 4

∫ π/2

0

√
a2 sin2 θ + b2 cos2 θdθ =

= 4a
∫ π/2

0

√
1 −

(
1 − b2

a2

)
cos2 θ dθ =

= 4a
∫ π/2

0

√
1 − e2 cos2 θ dθ =

= 4a
∫ π/2

0

√
1 − e2 sin2 θ dθ = 4aE(e), (N.49)

since cos θ = sin
(π

2
− θ

)
. The function:

E(k) =
∫ π/2

0

√
1 − k2 sin2 θdθ, (N.50)

is the complete elliptical integral of the secondkindwith ellipticalmodulus 0 < k < 1
(sometimes replaced with the parameter m = k2). We can see from (N.49) that E(e)
is a quarter of the length of the ellipse. For the circle, the eccentricity is e = 0, so
E(0) = π/2, and L = 2πa, as expected.

Since elliptical integrals cannot be expressed in terms of elementary functions, we
must first expand the integrand in (N.50) by the same binomial series (5.35) used at
Sect. 5.3, where this time the variable is x = −k2 sin2 θ. The fact that by hypothesis
0 ≤ k < 1 implies that 0 ≤ |x | = k2 sin2 θ < 1, which ensured that the series:

(1 + x)1/2 =
∞∑

i=0

(−1)i

(
1/2

i

)
xi , (N.51)

with the coefficients:

(−1)i

(
1/2

i

)
= (−1)i (1/2)!

i !(1/2 − i)! =

= (1/2)

1

(1/2 − 1)

2

(1/2 − 2)

3
· · · (1/2 − i + 1)

i
= −1

2

1

4

3

6

5

8

(2i − 3)

2i
, (N.52)

converges absolutely for 0 ≤ θ ≤ π/2. Hence, the (N.50) becomes:

35 Incidentally, we report without demonstration one of the many approximated formulas for the

perimeter of an ellipse, due to Euler (1773): L ≈ 2π

√
a2 + b2

2
, which holds for small ellipticities.
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E(k) =
∫ π/2

0

(
1 −

∞∑
i=0

1

2

1

4

3

6

5

8

(2i − 3)

2i
k2i sin2i θ

)
dθ, (N.53)

which can be integrated term by term since the series is absolutely convergent:

E(k) = π

2
−

∞∑
i=0

1

2

1

4

3

6

5

8

(2i − 3)

2i
k2i
∫ π/2

0
sin2i θ dθ. (N.54)

Since: ∫ π/2

0
sinm θ dθ = 1 · 3 · 5 · · · (m − 1)

2 · 4 · 6 · · · m

π

2
, (N.55)

we finally obtain:

E(k) = π

2

[
1 −

(
1

2

)2 k2

1
−
(
1 · 3
2 · 4

)2 k4

3
−
(
1 · 3 · 5
2 · 4 · 6

)2 k6

5
− · · ·

]
=

= π

2

[
1 − 1

4
k2 − 3

64
k4 − 5

256
k6 − · · ·

]
, (N.56)

from which we deduce the obvious property that, with the same semi-major axis, the
length of the perimeter decreases with increasing ellipticity.

The complete elliptical integral of the first kind:

K (k) =
∫ π/2

0

dθ√
1 − k2 sin2 θ

, (N.57)

appears in the relativistic two-body problem (Sect. 4.14) and in the gravitational
potential of an infinitely thin ring and a circular homogenous torus (see Sect. 5.13.1).
It can be seen from (N.57) that K (0) = E(0) = π/2.

If the upper limit depends on the angle, we obtain the incomplete elliptical integral
of the corresponding type. The incomplete elliptical integral of the first kind is:

K (β, k) =
∫ β

0

dθ√
1 − k2 sin2 θ

, (N.58)

and that of the second kind:

E(β, k) =
∫ β

0

√
1 − k2 sin2 θdθ. (N.59)

There is a beautiful identity between the complete integrals of the first and the second
kind called Legendre relation:
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K (k)E(
√
1 − k2) + E(k)K (

√
1 − k2) − K (k)K (

√
1 − k2) = π

2
. (N.60)

The symmetric notation K ′ = K (k ′) and E ′ = E(k ′) with the complimentary mod-
ulus k ′ = √

1 − k2 is also used, with which the Legendre relation takes a compact
form:

K E ′ + E K ′ − K K ′ = π

2
. (N.61)

Functional expressions that are useful for analytical calculation (cf. [11]) are:

d K (k)

dk
= E(k)

k k ′2 − K (k)

k
, (N.62)

d E(k)

dk
= E(k) − K (k)

k
, (N.63)

K

(
2
√

k

1 + k

)
= (1 + k)K (k), (N.64)

E

(
2
√

k

1 + k

)
= 1

1 + k

[
2E(k) − k ′2K (k)

]
. (N.65)

There is also the incomplete elliptical integral of the third kind:

�(n;β, k) =
∫ β

0

dθ

(1 + n sin2 θ)
√
1 − k2 sin2 θ

, (N.66)

and the corresponding complete form:

�(n, k) = �(n;π/2, k) =
∫ π/2

0

dθ

(1 + n sin2 θ)
√
1 − k2 sin2 θ

. (N.67)



Appendix O
Orthogonal Functions

Carl Friedrich Gauss

It is not knowledge, but the act of learning, not posses-
sion but the act of getting there, which grants the greatest
enjoyment.

Orthogonal functions assume considerable importance in several mathematical and
physical problems, from quantummechanics36 to astrophysics (for instance, in astro-
seismology which studies oscillations in stars). We devote this appendix to a general
description of these functions, paying particular attention to the Legendre polyno-
mials for their key role in celestial mechanics. We start considering a classical case
in which the need for orthogonal functions becomes apparent.

O.1 Least Squares

Given a basis of n real functions fi (x) of the real variable x in the domain [x◦, x1],
we aim to find the linear combination that best approximates a function g(x) within
the same domain. In other words, we want to determine the ‘best’ set of coefficients
ai that, according to some given rule, satisfy the condition:

g(x) ≈
n∑

i=1

ai fi (x), (O.1)

for x◦ ≤ x ≤ x1. The formulation of the problem becomes clearer and lends to a
quantitative statement if we introduce the cumulative error function:

36 For a description of the applications of orthogonal functions to quantum mechanics see [7, 8].
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ε (x, a1, · · · , an) = g(x) −
n∑

i=1

ai fi (x). (O.2)

Usually, no set of coefficients ai is capable of cancelling ε on the entire interval
[x◦, x1]; if this were the case, we would have the exact solution to our problem. In
most cases we have to settle for minimizing the error function. The dilemma is the
choice of a minimization criterion suitable for the application we are interested in.
For example, following Chebyshev,37 we can try to minimize the maximum of |ε|
within the range of x ; in this way we obtain a representation of g(x) with a known
tolerance at any point of the domain. Following Gauss,38 we can instead minimize
the integral value of some power m of ε:

Em(a1, · · · , an) =
∫ x1

x◦
[ε (x, a1, · · · , an)]

m dx, (O.3)

where m > 0 is an even integer, as we shall see (in this second case there is no
guarantee that in the domain there are no high error peaks). The minimum of Em is
given by the zeros of all its partial derivatives with respect to the parameters ai :

∂

∂ai
Em(a1, · · · , an) =

∫ x1

x◦
m
{
g(x) −

n∑
j=1

a j f j (x)
}m−1

fi dx = 0; (O.4)

note that Em does not depend of x. It is evident that m = 1 does not impose any
conditions on the parameters (it is the trivial solution, being the exponentm − 1 = 0).
An intuitive explanation is provided in Fig.O.1, where we have chosen g(x) to be a
segment, n = 2, f1(x) = a and f2(x) = x . The problem is in the sign of the residuals
ε (x) at each abscissa; problem shared by any odd value of m. One might get around
the problem by using the absolute value of ε in the integral (O.3), but modules are
difficult tools to handle analytically. If m = 2, the (O.4) gives:

∂

∂ai
E2(a1, · · · , an) = 2

∫ x1

x◦

{
g(x) −

n∑
j=1

a j f j (x)
}

fi dx = 0, (O.5)

i.e., n linear algebraic equations in the parameters ai of the type:

37 Pafnuty L. Chebyshev (1821–1894): Russian mathematician, whose main contributions are in
the fields of probability, statistics, and number theory.
38 The first publication of the least squares method was by Legendre in 1805, but it was Gauss in
1809 to give a complete account, linking the method to the principles of probability. The German
genius also claimed to have known the method since 1795 and to have used it in predicting the
position of Ceres (see also the note 29 at Sect. 2.9). The fact gave rise to a bitter dispute for the
priority with Legendre.



Appendix O: Orthogonal Functions 347

Fig. O.1 Best
representation of a segment
A-C (in red) by means of a
straight line. If the condition
is that the algebraic sum of
the differences is minimal,
then the solution exists but it
is not unique. Any straight
lines though the median
point B satisfies it

n∑
j=1

a j

∫ x1

x◦

{
f j (x) fi (x)

}
dx =

∫ x1

x◦

{
g(x) fi (x)

}
dx (i = 1, . . . , n),

(O.6)
If the system (O.6) can be inverted, i.e., if its determinant is not null, it provides one
and only one solution and therefore uniquely determines the value of the parameters
ai (uniqueness does not exist for even integers m > 2).

In conclusion, the Gauss or least squares method consists in minimizing the stan-
dard deviation σ;

(x1 − x◦)σ2 =
∫ x1

x◦

{
g(x) −

n∑
j=1

a j f j (x)
}2

dx . (O.7)

The applications of this method to mathematics are numerous, but even larger are
those to experimental sciences, where the least squares fit is commonly used for the
analytic interpolation of measurements.

Before considering this aspect, however, let us return to the system of equations
(O.6). It is apparent that the parameters ai are intimately linked to all the n functions
fi . The consequence is that any modification of the set of functions fi (for example,
by adding or removing one function) affects the values of all the coefficients. This
fact bears a practical difficulty: at any such change of the base of functions, we must
recalculate the normal system (O.6) and solve it again (a drama when calculations
were made by hand). This inconvenience is completely removed if the functions
fi (x) satisfy the condition of orthogonality:

∫ x1

x◦
fi (x) f j (x) dx ∝ δi j (i, j = 1, . . . , n). (O.8)

When the proportionality turns into equality, the functions are called orthonormal.
Any orthogonal family can be converted into an orthonormal family by dividing each
function fi by the normalization factor:
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[∫ x1

x◦

{
fi (x)

}2
dx

]1/2
. (O.9)

For orthonormal functions, the solution of (O.6) is reduced to n quadratures:

ai =
∫ x1

x◦

{
g(x) fi (x)

}
dx (i = 1, . . . , n), (O.10)

and each coefficient is determined independently of the others.

O.2 A Family of Orthogonal Polynomials

Wenow examine a special class of orthogonal functions, the orthogonal polynomials.
A system of polynomials pn(x) of degree n is said to be orthogonal in the interval
a ≤ x ≤ b with respect to the function w(x), used for standardization purposes, if:

∫ b

a
w(x) pm(x) pn(x) dx = 0, m �= n (O.11)

Then, placing: ∫ b

a
w(x)

[
pn(x)

]2
dx = hn, (O.12)

the system of polynomials pn(x)/
√

hn is called orthonormal.
Orthogonal polynomial systems are obtained as solutions of the differential equa-

tion:

g2(x)
d2 pn(x)

dx2
+ g1(x)

dpn(x)

dx
+ an pn(x) = 0. (O.13)

The constant parameters an , dependent on the integer n, and the functions g1(x) and
g2(x), independent of n, fix the family. Note that the family of polynomials formed
by the derivatives of an orthogonal system retains the characteristics of orthogonality.

The following recurrence formulas apply:

pn+1(x) = (
an + xbn

)
pn(x) − cn pn−1(x), (O.14)

as well as the formula of Rodriguez:

pn(x) = 1

enw(x)

dn

dxn

{
w(x)

[
g(x)

]n}
. (O.15)

The constants an , bn , cn , and en are specific to each family.
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O.3 Legendre Polynomials

In Sect. 5.3 we showed how the function (5.25):

f (z,μ) = (1 − 2μz + z2)−1/2, (O.16)

can be expanded in powers whose coefficients are the Legendre polynomials:

f (z,μ) =
∞∑

k=0

Pk(μ)zk . (O.17)

This development allowed us to obtain important information on the gravitational
potential.

An alternative definition is possible if the Legendre functions are identified with
the solutions of the differential equation:

d

dμ

[
(1 − μ2)

d

dμ
P(μ)

]
+ k(k + 1)P(μ) = 0, (O.18)

named after Lagrange. This gives solutions in the form of a convergent series for
|μ| < 1. Converging solutions are also found for μ = ±1, as long as the index k is a
natural integer: in this case the above mentioned Legendre polynomials are found.

Legendre polynomials are orthogonal in the interval39 −1 ≤ μ ≤ 1:

∫ 1

−1
dμPh(μ)Pk(μ) = 2

2k + 1
δhk, (O.19)

and the Rodriguez formula (O.15) holds, which writes explicitly as:

Pk(μ) = 1

2kk!
dk

dμk

[
(μ2 − 1)k

]
. (O.20)

The first polynomials are:

P0(μ) = 1,

P1(μ) = μ,

P2(μ) = 1

2
(3μ2 − 1), (O.21)

P3(μ) = 1

2
(5μ3 − 3μ),

P4(μ) = 1

8
(35μ4 − 30μ2 + 3).

39 In the analysis done in Sect. 5.3, this region also coincided with the range of variability of the
parameter μ, given the position: μ = cos γ.
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Below we list and demonstrate some of the properties used in the calculus of gravi-
tational potential, therein including the expressions (O.19) and (O.20).

(a) For each value of the index k it is: Pk(1) = 1.

In fact, if μ = 1, then:

f (z, 1) = (1 − 2z + z2)−1/2 = (1 − z)−1, (O.22)

which, expanded in binomial series, gives:

f (z, 1) = (1 − z)−1 =
∞∑

k=0

zk . (O.23)

Equating (O.23) with (5.39), where μ = 1, it is necessarily:

Pk(1) = 1. (O.24)

(b) For each value of the index k it results: Pk(−μ) = (−1)k Pk(μ).

In fact, it is:

f (z,μ) =
(
1 + 2(−μ) z + z2

)−1/2 =
∞∑

k=0

Pk(μ) zk, (O.25)

but also:

f (z,μ) =
(
1 + 2μ(−z) + (−z)2

)−1/2 =
∞∑

k=0

Pk(−μ) (−z)k . (O.26)

By equating terms to terms these two series, we have:

Pk(μ) zk = Pk(−μ) (−z)k = (−1)k Pk(−μ) zk, (O.27)

and therefore, by eliminating zk :

Pk(−μ) = (−1)k Pk(μ). (O.28)



Appendix O: Orthogonal Functions 351

Recalling the condition (O.24), from (O.28) we have as a corollary:

Pk(−1) = (−1)k . (O.29)

(c) For each value of the index k it results: |Pk(μ)| ≤ 1.

Using the Euler formula, we put:

μ = cos γ = eiγ + e−iγ

2
, (O.30)

with which the function (O.16) can be written as:

f (z,μ) = (1 − 2zμ + z2)−1/2 = (1 − z eiγ)−1/2(1 − z e−iγ)−1/2, (O.31)

and, due to (O.17):

f (z,μ) =
∞∑

k=0

Pk(μ) zk = (1 − z eiγ)−1/2(1 − z e−iγ)−1/2. (O.32)

Having verified that the convergence condition |ze±iγ | < 1 is satisfied, we expand
in series40 each binomial at the right-hand side of (O.31):

f (z,μ) =
∞∑

k=0

Pk(μ) zk =
∞∑

k=0

(−1/2

k

)
zkeikγ

∞∑
k ′=0

(−1/2

k ′

)
zk ′

e−ik ′γ =

=
(
1 + 1

2
zeiγ + 3

8
z2e2iγ + . . .

)
×

×
(
1 + 1

2
ze−iγ + 3

8
z2e−2iγ + . . .

)
, (O.33)

40 The expansion of the binomial (a + b)α is:

(a + b)α =
∞∑

k=0

(
α

k

)
aα−kbk ,

where: (
α

k

)
= α(α − 1)(α − 2) · · · (α − k + 1)

k! .
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and multiply the two series according to the Cauchy rule.41 Grouping the coefficients
of the same powers of z, we obtain42:

Pk(μ) = (2k)!
22k (k)!

[
2 cos(kγ) + k

(2k−1)
2 cos

(
(k−2)γ

)+ · · ·
]

, (O.34)

with the series at the right-hand of (O.34) which ends with term containing 2 cos γ
if k is odd, and with cos

(
(k−k)γ

) = 1 if k is even. In other words, the expansion
of f (z,μ) in a power series of z has coefficients given by the following functions:

Pk(μ) =
n∑

h=0

a2h cos
(
γ(k−2h)

)
⎧⎪⎪⎨
⎪⎪⎩

n = k

2
if k is even,

n = k − 1

2
if k is odd,

(O.35)

wherea2h ≥ 0 for each value of the index h.Whenγ is zero, i.e.,whenμ = cos γ = 1,
the (O.35) reduces to:

Pk(1) =
n∑

h=0

a2h = 1, (O.36)

as Pk(1) = 1
(
property a) on Sect.O.3

)
. Therefore:

41 Given two series:
∞∑

k=0

ak and
∞∑

k=0

bk , we call Cauchy product their discrete convolution:

( ∞∑
k=0

ak

)
·
( ∞∑

k=0

bk

)
=

∞∑
k=0

cn,

where:

cn =
n∑

k=0

(
n

k

)
ak bn−k .

A theorem due to the polish mathematician Franz Mertens (1840–1927) states that, if one series
converges to Sa and the other to Sb, and if at least one of them converges absolutely, their Cauchy
product converges to the product Sa Sb.
42 This step is quite tricky. To reach the result, one must take into account the fact that, when
performing the Cauchy product of the two series of the previous footnote 41, the following condition

applies: cn =
∞∑

k=0

ak bn−k =
∞∑

k=0

an−k bk , i.e.:

cn = 1

2

( ∞∑
k=0

ak bn−k +
∞∑

k=0

an−k bk

)
.
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Fig. O.2 Legendre polynomials Pn(μ) up to the degree n = 10: the even polynomials are in left
panel and the odd polynomials in the right one

|Pk(μ)| =
∣∣∣∣∣

n∑
h=0

a2h cos
(
γ(k−2h)

)∣∣∣∣∣ ≤

≤
n∑

h=0

a2h

∣∣∣ cos(γ(k−2h)
)∣∣∣ ≤

n∑
h=0

a2h = 1, (O.37)

that is, |Pk(μ)| ≤ 1. The trend of the Legendre polynomials up to the degree n = 10
is plotted in Fig.O.2.

(d) For each value of the index k it results: Pk(μ) = 1

2k k!
dk

dμk
(μ2 − 1)k .

To prove this property, we first consider the function:

λ = μ + 1

2
α (λ2 − 1). (O.38)

Its dependent variable λ is equal to μ if the parameter α is zero. We transform the
(O.38) through the Lagrange expansion of formula (F.2); it results:

λ = μ +
∞∑

k=1

αk

k!
dk−1

dμk−1

(
μ2 − 1

2

)k

, (O.39)

and, deriving with respect to μ:

dλ

dμ
= 1 +

∞∑
k=1

αk

k!
dk

dμk

(
μ2 − 1

2

)k

. (O.40)

We solve now Eq. (O.38) with respect to λ. One solution is:
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λ = α−1
(
1 −

√
1 − 2μα + α2

)
. (O.41)

By differentiating for μ and recalling (5.39), we obtain:

dλ

dμ
= (1 − 2μα + α2)−1/2 = 1 +

∞∑
k=1

αk Pk(μ). (O.42)

Finally, by equating the coefficients of (O.40) with those of equal power of α appear-
ing in (O.42), we obtain the Rodriguez formula (O.20).

(e) Pk(μ) has k and only k distinct zeros in the range |μ| < 1.

Let us consider the Rodrigues formula (O.20). Being a polynomial of degree 2k,
the function g(μ) = (μ2 − 1)k has 2k zeros, k of which at μ = −1 and k at μ = 1.
According to the Rolle43 theorem, its derivative, dg(μ)/dμ, has at least one zero
within the interval |μ| < 1. But, being a polynomial of degree 2k−1, this derivative
has a total of 2k−1 zeros, of which k−1 at μ = −1 and k−1 at μ = 1. Therefore
the zero internal to the interval −1 < μ < 1 not only exists but is also unique. By
the same procedure it is shown that the second derivative, d2g(μ)/dμ2, has two and
only two zeros in the range −1 < μ < 1. In general, therefore, dkg(μ)/dμk has k
and only k zeros between −1 and +1. On the basis of Rodrigues’ formula, it is then
proved that, in the same interval, a Legendre polynomial Pk(μ) of degree k has k and
only k zeros.

It remains to be proven that they are distinct. To this end we show that, if y is a
non-trivial solution of the homogeneous linear differential equation:

a(x)
d2y

dx2
+ b(x)

dy

dx
+ c(x) y = 0, (O.43)

with a(x), b(x), and c(x), functions indefinitely derivable, it cannot have repeated
zeros unless they satisfy the condition a = 0. Indeed, if x◦ is a repeated zero, it must

be y(x◦) =
(

dy

dx

)
x◦

= 0, and therefore, based on (O.43), also

(
d2y

dx2

)
x◦

= 0, unless

a(x◦) = 0. Furthermore, the derivative of (O.43) respect to x :

a(x)
d3y

dx3
+
(

d

dx
a(x) + b(x)

)
d2y

dx2
+

+
(

d

dx
b(x) + c(x)

)
dy

dx
+ y

d

dx
c(x) = 0, (O.44)

43 Michel Rolle (1652–1719), Frenchmathematician, known for the following theorem: if a function
is continuous in a closed interval [a, b], differentiable at any point of the open interval (a, b), and
with equal values at the extremes, i.e., f (a) = f (b), there is at least one point inside (a, b) where
the first derivative of f (x) is zero.
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shows that also the third derivative is null. Iterating the reasoning, it is proved that all
the subsequent derivatives are null in x◦. But, based on the Taylor expansion theorem,
this implies that the function y(x) is identically null in a whole neighbourhood of
x◦. This is therefore a trivial solution. Since, as we demonstrated in Sect. 5.5, the
Legendre polynomials are non-trivial solutions of a differential equation of the type
(O.43), with a(x) = 1 − x2 �= 0 in the open interval (−1,+1), then in this same
interval they cannot have repeated zeros.

(f) If the positive integers h and k are different from one another, it results:

∫ +1

−1
Ph(μ) Pk(μ) dμ = 0 (h �= k). (O.45)

If h �= k, let h > k. By means of the Rodrigues formula:

Ihk =
∫ +1

−1
Ph(μ)Pk(μ) dμ =

= 1

2h+kh!k!
∫ +1

−1

dh

dμh
(μ2 − 1)h dk

dμk
(μ2 − 1)k dμ, (O.46)

which, integrated by parts, provides:

Ihk = 1

2h+kh!k!
dh−1

dμh−1
(μ2 − 1)h dk

dμk
(μ2 − 1)k

∣∣∣∣
+1

−1

+

− 1

2h+kh!k!
∫ +1

−1

dh−1

dμh−1
(μ2 − 1)h dk+1

dμk+1
(μ2 − 1)k dμ. (O.47)

The first element in the second term of (O.47) is cancelled by the presence of the
factor (μ2 − 1) in the (h−1)-th derivative of (μ2 − 1)h . By repeating this operation
k − 1 times, we obtain the expression:

Ihk = (−1)k

2h+kh!k!
∫ +1

−1

dh−k

dμh−k
(μ2 − 1)h d2k

dμ2k
(μ2 − 1)k dμ, (O.48)

which integrates in:

Ihk = (−1)k(2k)!
2h+kh!k!

dh−k−1

dμh−k−1
(μ2 − 1)h

∣∣∣∣
+1

−1

, (O.49)

since
d2k

dμ2k
(μ2 − 1)k = (2k)!. Note that this relation holds because (μ2 − 1)k is a

polynomial of degree 2k.
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It is easy to prove that Ihk is null. In fact, having assumed h > k, it is
also h − k − 1 ≥ 0. Therefore, the formal derivative of (μ2 − 1)h contains the factor
(μ2 − 1), which is zero at the extremes of integration. The property just proved can
be summarized by saying that Legendre’s polynomials form a family of orthogonal
polynomials.

As a corollary, we observe that, if h = k, the (O.48) gives:

Ikk =
∫ +1

−1

[
Pk(μ)

]2
dμ = (−1)k(2k)!

22k(k!)2
∫ +1

−1
(1 − μ2)k dμ, (O.50)

from which, placing μ = 2x − 1, it is:

Ikk =
∫ +1

−1

[
Pk(μ)

]2
dμ = 2(−1)k(2k)!

(k!)2
∫ +1

0
xk(1 − x)k dx =

= 2(2k)!
(k!)2 B(k+1, k+1) = 2(2k)!

(k!)2
�(k + 1)�(k + 1)

�
(
2(k + 1)

) =

= 2(2k)!
(k!)2

�(k + 1)�(k + 1)

�
(
(2k + 1) + 1

) = 2

2k+1
, (O.51)

where B is the Beta function44 (see Sects.N.1 and N.2). It follows immediately that:

∫ +1

0

[
Pk(μ)

]2
dμ = 1

2k+1
. (O.52)

It can be proven that the moments of order h ≥ k of the Legendre polynomials are:

∫ +1

0
μh Pk(μ)dμ = h(h−1)(h−2) · · · (h−k +2)

(h+k+1)(h+k −1) · · · (h−k +3)
. (O.53)

g) Recurrence formula for Legendre function.

(k+1)Pk+1(μ) − (2k+1)μPk(μ) + k Pk−1(μ) = 0, (O.54)

μ
d Pk(μ)

dμ
− d Pk−1(μ)

dμ
= k Pk(μ), (O.55)

d Pk+1(μ)

dμ
− d Pk−1(μ)

dμ
= (2k+1)Pk(μ), (O.56)

d Pk+1(μ)

dμ
− μ

d Pk(μ)

dμ
= (k+1)Pk(μ), (O.57)

(1 − μ2)
d Pk(μ)

dμ
= k Pk−1(μ) − kμPk(μ). (O.58)

44 We may obtain the same result by integrating by parts k times.
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In Sect. 5.5.3 we showed how the associated Legendre equation (5.82), which we
rewrite here for clarity:

d

dμ

[
(1 − μ2)

dy(μ)

dμ

]
+
[

n(n+1) − m2

1 − μ2

]
y(μ) = 0, (O.59)

is solved by functions which depend on Legendre polynomials, called associated
Legendre functions, defined through the Rodrigues formula:

Pm
n (μ) = (μ2 − 1)m/2

2nn!
dm+n

dμm+n
(μ2 − 1)n. (O.60)

Note how these functions become Legendre polynomials for m = 0. From the com-
parison with that for the Legendre polynomials, this expression proves that, apart
from themultiplicative factor, Pm

n (μ), it is a Legendre polynomial of degree (n − m).
We will now show that these functions satisfy a relations of orthogonality. In fact,
since both Pm

n and Pm
n′ are solutions of (O.59), it must be:

d

dμ

[
(1 − μ2)

d Pm
n (μ)

dμ

]
+
[

n(n+1) − m2

1 − μ2

]
Pm

n (μ) = 0,

d

dμ

[
(1 − μ2)

d Pm
n′ (μ)

dμ

]
+
[

n′(n′+1) − m2

1 − μ2

]
Pm

n′ (μ) = 0.

(O.61)

Subtracting the second equation, multiplied by Pm
n (μ), from the first one, multiplied

by Pm
n′ (μ), and integrating in the limits −1 and +1, we have:

(n−n′)(n + n′+1)
∫ +1

−1
Pm

n (μ) Pm
n′ (μ) dμ+

+
∫ +1

−1

[
Pm

n′ (μ)
d

dμ

(
(1 − μ2)

d Pm
n (μ)

dμ

)
+

− Pm
n (μ)

d

dμ

(
(1 − μ2)

d Pm
n′ (μ)

dμ

)]
dμ = 0 . (O.62)

Let us consider the second integral of this equation. Integrating by parts, we obtain:

∫ +1

−1

d

dμ

[
(1 − μ2)

(
Pm

n (μ)
d

dμ
Pm

n′ (μ) − Pm
n′ (μ)

d

dμ
Pm

n (μ)

)]
dμ = 0, (O.63)

which is zero because the multiplicative term (1 − μ2) vanishes at the limits of
integration. It is therefore proven that:

(n − n′)(n + n′+1)
∫ +1

−1
Pm

n (μ)Pm
n′ (μ) dμ = 0. (O.64)
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In conclusion, if n′ �= n, the only way for (O.64) to be satisfied is that (5.99) holds.
As a corollary, we give the following important result without demonstration:

∫ +1

−1

[
Pm

n (μ)
]2

dμ = (−1)m (n+m)!
(n−m)!

2

2n+1
. (O.65)

Summarizing, within the open interval −1 < μ < +1, the functions (5.97) are solu-
tions of the associated Legendre equation for integer values of the non-negative
parameters n and m. Furthermore, since from (5.98) it turns out that Pm

n ≡ 0 for
m > n, we can say that these solutions are non-trivial only if m ≤ n. In conclusion,
we have demonstrated that the associated Legendre polynomials form a family of
orthogonal polynomials.

O.4 Spherical Harmonics

In Sect. 5.5 we introduced the concept of spherical harmonic. This appendix com-
pletes what was anticipated there.

Spherical harmonics (cf. [12]) are obtained as solutions of the angular part of the
Laplace equation, that we rewrite here in spherical coordinates for convenience:

∇2 f = 1

r2
∂

∂r

(
r2

∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂ϕ2
= 0. (O.66)

The solutions of this equation, called Un in Sect. 5.5 (but frequently met in the
literature with the symbol Y m

� ), are the product of a trigonometric function with the
solution of the associated Legendre equation. In particular, there will be a solution
such as (5.83):

U m
n (θ,φ) =

[
A cos(mφ) + B sin(mφ)

]
T m

n (cos θ), (O.67)

known as spherical harmonic of degree n and order m, or another one having a more
compressed form:

Y m
� (θ,φ) = N eimφ Pm

� (cos θ). (O.68)

When the Laplace equation is solved on the sphere, then it can be easily shown that
n and m must satisfy the conditions n ≥ 0 and |m| ≤ n (see also Appendix I).
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O.4.1 Harmonics Representation

Goingback to the formalismused in (5.83) and (O.67),wehave shown inSect. 5.5 that
spherical harmonics can be classified into three subclasses: zonal (m = 0), tesseral
(0 < m < n), and sectoral (m = n). We will now prove that a spherical harmonic
of degree n is always a linear combination of the corresponding zonal, tesseral, and
sectoral harmonics.

To this end, we start considering a homogeneous polynomial Vn(x, y, z) of degree

n in x , y, and z. Generally it contains
1

2
(n+1)(n + 2) arbitrary constants. But, if

it is a solid spherical harmonic, i.e., a solution of the Laplace equation ∇2Vn = 0,
the number of arbitrary constants reduces to (2n+1). In fact, the function ∇2Vn

is itself a polynomial, but of degree (n−2), with
1

2
n(n−1) coefficients which are

linear combinations of those of Vn and, for the condition posed by the Laplace
equation, are null. In conclusion, if Vn(x, y, z) is a solid spherical harmonic, only
1

2

[
(n+1)(n+2) − n(n−1)

]
= (2n+1) of its coefficients are linearly independent

and can therefore be chosen arbitrarily. Consequently, Vn(x, y, z) can be written in
the general form:

Vn(x, y, z) =
2n+1∑
k=1

ak (Xn)k, (O.69)

where ak are constants. The (2n + 1) functions (Xn)k are solid spherical harmonics
of degree n. To prove it, we just cancel all the coefficients ak but one. They are also
linearly independent. If this were not the case, Vn would depend on a number of
arbitrary constants less than (2n+1).

We now denote by
(
Yn(θ,φ)

)
k the surface spherical harmonic corresponding to

(Xn)k : (
Xn(x, y, z)

)
k

= rn
(

Yn(θ,φ)
)

k
. (O.70)

Substituting in (O.69) we obtain:

r−n Vn(x, y, z) = Un(θ,φ) =
2n+1∑
k=1

ak

(
Yn(θ,φ)

)
k
, (O.71)

where Un(θ,φ) is the surface spherical harmonic corresponding to Vn . Due to the
polynomial nature of the latter, it is easy to realize that Un(θ,φ) is a homogeneous
polynomial of integer degree n in the variables cosφ sin θ, sin φ sin θ, and cos θ.
This structure is characteristic of each surface spherical harmonic of integer degree
(5.101). The expression (O.69) shows that any spherical harmonic of integer degree n
can always be a linear combination of (2n+1) arbitrary spherical surface harmonics
of equal degree n, provided that they are linearly independent of each other.

Based on this result, we now consider the following (2n+1) harmonics:
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(
Zn(θ,φ)

)
1

= Pn(cos θ),

· · · · · · · · · · · · = · · · · · · · · · · · · · · ·(
Zn(θ,φ)

)
1+m

= cos(mφ) T m
n (cos θ), (O.72)

· · · · · · · · · · · · = · · · · · · · · · · · · · · ·(
Zn(θ,φ)

)
1+n+m

= sin(mφ) T m
n (cos θ),

· · · · · · · · · · · · = · · · · · · · · · · · · · · ·

which are obtained from (O.67) using the fact that the tesseral and sectoral harmonics
have twoarbitrary constants, A and B. Forwhat it has been said,wemaywrite (2n+1)
equations as:

(
Zn(θ,φ)

)
j
=

2n+1∑
k=1

(bk) j

(
Yn(θ,φ)

)
k

( j = 1, . . . , 2n+1). (O.73)

The system (O.72) can be solved because the functions (Zn) j are linearly indepen-
dent. We obtain:

(
Yn(θ,φ)

)
k

=
2n+1∑
h=1

(ck)h

(
Zn(θ,φ)

)
h

(k = 1, . . . , 2n+1), (O.74)

and therefore, substituting in (O.71):

Un(θ,φ) =
2n+1∑
k=1

[
ak

(
2n+1∑
h=1

(ck)h(Zn)h

)]
=

=
2n+1∑
h=1

(Zn)h

(
2n+1∑
k=1

ak (ck)h

)
=

2n+1∑
h=1

dh

(
Zn

)
h

=

= A◦ Pn(cos θ) +
n∑

m=1

[
Am cos(mφ) + Bm sin(mφ)

]
T m

n (cos θ), (O.75)

where A◦, Am and Bm are constants. In other words, any surface spherical harmonic
of integer degree n can be expressed as a linear combination of the corresponding
zonal, tesseral, and sectoral harmonics. In compact notation:

Un(θ,φ) = A◦ Pn(cos θ) +
n∑

m=1

cos(mφ)

sin(mφ)
T m

n (cos θ), (O.76)

which is what we wanted to prove.
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O.4.2 Orthogonality of Spherical Harmonics

The expression (O.76) allows us to show that two generic spherical harmonics of
integer surface, Xn(θ,φ) and Yn′(θ,φ), satisfy the condition of orthogonality:

∫ 2π

0

∫ π

0
Xn(θ,φ) Yn′(θ,φ) d(cos θ) dφ = 0, (O.77)

if n′ �= n. In fact, by developing the product through (O.76), we obtain n(2n+1)
integrals of the type:

∫ 2π

0

∫ π

0

cos(kφ)

sin(kφ)
T k

n′(cos θ)
cos(hφ)

sin(hφ)
T h

n (cos θ) d(cos θ) dφ, (O.78)

which, when h = k, are null because of (5.99). For k �= h, they are equally zero
because:

∫ 2π

0
cos(kφ) cos(hφ) dφ =

∫ 2π

0
sin(kφ) sin(hφ) dφ = 0, (O.79)

and in general: ∫ 2π

0
sin(kφ) cos(hφ) dφ = 0. (O.80)

If instead the two spherical harmonics have the same degree n, it can be shown that:

∫ 2π

0

∫ π

0
Xn(θ,φ)X ′

n(θ,φ) d(cos θ) dφ =

= 2π

2n+1

[
2A◦ A′◦ +

n∑
m=1

(n + m)!
(n − m)!

(
Am A′

m + Bm B ′
m

)]
. (O.81)

In particular, if X ′
n is a zonal harmonic Pn , i.e., if all the coefficients A′

m and B ′
m

but A′◦ = 1 are null, the relation (O.81) becomes:

∫ 2π

0

∫ π

0
Xn(θ,φ)Pn(cos θ) d(cos θ) dφ = 4π

2n+1
A◦ = 4π

2n+1
Xn(1), (O.82)

since, at the pole, T m
n (μ=1) is cancelled due to the presence of the factor (1 − μ2)1/2,

and therefore Xn(1) = A◦.
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O.4.3 Addition Theorem

Let γ be the angle between the radius vectors of two generic points P(r, θ,φ) and
Q(r ′, θ′,φ′) relative to the origin of the reference system: γ = arccos

(
rP · rQ

)
(see

Fig. 5.2 at Sect. 5.3). Recalling (5.24):

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ − φ′), (O.83)

we consider a Legendre polynomial of argument cos γ. At Sect. 5.5 we have shown
that Pn(cos γ), being a solution of equation (5.76), is a spherical surface harmonic
of degree n; it can thus be developed in zonal, sectoral, and tesseral harmonics:

Pn(cos γ) = A◦ Pn(cos θ) +
n∑

k=1

[
Ak cos(kφ) + Bk sin(kφ)

]
T k

n (cos θ). (O.84)

We want to prove the so-called addition theorem: the coefficients Am and Bm are
given by:

Am = 2
(n−m)

(n+m)
× cos(mφ′) T m

n (cos θ′), (O.85a)

Bm = 2
(n−m)

(n+m)
× sin(mφ′) T m

n (cos θ′). (O.85b)

We multiply both terms of (O.84) by cos(mφ) T m
n (cos θ), and integrate on the unit

sphere. Taking advantage of both the orthogonality of the Ferrers functions and the
relations (O.65) and (5.76), and noticing that for every integer and non-null m it is:

∫ 2π

0
cos2(mφ) dφ = π, (O.86)

we have:

∫ 2π

0

∫ π

0
cos(mφ) Pn(cos γ) T m

n (cos θ) d(cos θ) dφ =

= Am

∫ 2π

0
cos2(mφ) dφ

∫ π

0

[
T m

n (cos θ)
]2

d(cos θ) =

= 2π

2n+1

(n + m)!
(n − m)! Am . (O.87)

In order to explicit the first term inside the integral, we rotate the reference system,
making the new z-axis coincide with the radius vector of the point Q, whose old
angular coordinates are θ′ andφ′ (in this case the angle γ becomes the new coordinate



Appendix O: Orthogonal Functions 363

θ). We denote the new angular coordinates with the symbols ξ and η. Placed for
convenience: Y m

n (θ,φ) = cos(mφ) T m
n (cos θ), through (O.82) we have immediately:

∫ 2π

0

∫ π

0
Y m

n (cos θ,φ) Pn(cos γ) d(cos θ) dφ =

=
∫ 2π

0

∫ π

0
Y m

n (ξ, η) Pn(cos ξ) d(cos ξ) dη = 4π

2n+1
Y m

n (1). (O.88)

Since in the new coordinate system the pole is the point Q, we have:

Y m
n (1) = Y m

n (θ′,φ′) = cos(mφ′) T m
n (cos θ′). (O.89)

By replacing (O.88) and (O.89) in (O.87), we obtain the first of the (O.85a); the
second is readily obtained by a similar procedure.

In conclusion, the addition theorem proves that:

Pn(cos γ) =Pn(cos θ)Pn(cos θ′)+

+
n∑

m=1

2
(n − m)!
(n + m)! cos

(
m(φ − φ′)

)
T m

n (cos θ) T m
n (cos θ′), (O.90)

if the angle γ is given by (O.83).

O.5 An Application of Spherical Harmonics

A modern application of spherical harmonics to astrophysics concerns the study of
the anisotropies of cosmic background radiation (Cosmic Microwave Background
= CMB): one of the tracers of the primordial properties of the universe capable of
providing estimates of the cosmological parameters. The CMB,whose intensity peak
falls in the microwave domain,45 pervades the whole universe. Its spectrum is well
described by a black body at a temperature of about 2.73 ◦K.

On large angular scales, the background radiation is isotropic, but it has some
anisotropies46 at some smaller scales. These are temperature fluctuationsC = �T/T
that must be measured by constructing the power spectrum. The operation is equiv-
alent to expanding C in a Fourier series; or better, since the observational data are

45 The microwaves cover a wavelength range from 1 mm to about 1 m, with frequencies between
0.3 and 300 GHz. The peak of the CMB is at 160.2 GHz, or 1.9 mm.
46 Several observation campaigns have been launched to measure these anisotropies including
Boomerang [13], COBE, WMAP [14], and Planck [15]. In 2006 the principal investigators of
COBE, George Smoot and John Mather, received he Nobel Prize in physics for the discovery of
CMB anisotoropy.
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Fig. O.3 The CMB angular power spectrum. Credit: NASA/WMAP Science Team

collected on a sphere (the celestial vault), the expansion is done in terms of the
angular variables:

�T

T
=
∑

l

∑
m

almYlm(θ,φ), (O.91)

where l = 0 indicates the monopole moment, l = 1 the dipole moment, l = 2 the
quadrupole moment, and so on.47 The different m for the same l correspond to differ-
ent orientations with the same angular scale. It is customary to define the quantity48

Cl = ∑
m |alm |2 and represent the quantity l(l + 1)Cl as a function of l, since the

latter is approximately equal to the power per unit logarithmic interval of l:

〈δT

T
〉 =

∑
l

2l + 1

4π
Cl . (O.92)

The final result is a function with primary and secondary peaks for different values
of l, determined by the geometry of the universe. Therefore, the shape of this spec-
trum, and in particular the amplitude and the position of the peaks, allows to extract
information on the cosmological parameters and on the spectrum of the initial pertur-
bations of the universe, representing one of the most powerful tools of observational
cosmology (see Fig.O.3).

47 The multipole l is the counterpart of the angle θ, and the two are linked by a rough relation:
θ ∼ π/ l; therefore, as the angular scale increases, we are interested in smaller monopole moments.
48 This is the averagewith respect to all observers in the universe; since the universe is homogeneous
and isotropic, there are no preferred observing direction.



Appendix P
Some Theorems on Harmonic Functions

Heraclitus

The hidden harmony is better than the obvious.

The solid spherical harmonics, introduced at Sect. 5.5.1, are positively homogeneous
integer functions which are also solutions of the Laplace equation. Here we present
some theorems related to the complete family of solutions of the Laplace equation,
still called harmonic functions. We require them to be regular within the domain D,
limited by the surface L . The regularity of the function for the generic harmonic
function X (x, y, z) implies that it has:

1. first partial derivatives continuous within D and over L;
2. second partial derivatives continuous within D and limited on L .

In conclusion, it is essentially required that X is uniform in D.

P.1 Selected Theorems

Theorem No. 1

The flow of the gradient of a harmonic function X through the fixed surface S
contained in D is zero: ∫∫

S
∇X · dS = 0. (P.1)

By applying the Gauss theorem (Sect. 5.1) to the function ∇X , we have:

∫∫
S
∇X · dS =

∫∫∫
�

∇ · ∇X d�, (P.2)
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where� is the region enclosed by the surface S. Taking into account that, by assump-
tion, X is a spherical harmonic, it is ∇ ·∇X = ∇2X = 0, within the domain D, and
consequently everywhere in �. Therefore, the second integral term of (P.2) is zero,
with which the theorem is proven.

Theorem No. 2

If two harmonic functions X1 and X2 coincide in all points of the boundary S of a
region inside the intersection of the domains D1 and D2, they are equal in all points
of �.

It is sufficient to prove that the function X = X2 − X1 is null everywhere in �.
From the Green49 theorem applied to the function X2, we have:

∫∫∫
�

∇ · ∇X2 d� =
∫∫

S
∇X2 · dS. (P.3)

On the surface S it results:
∇X2 = 2 X ∇X ≡ 0, (P.4)

since X ≡ 0 by hypothesis. Furthermore, at any point of � it is:

∇ ·∇X2 = 2∇X · ∇X + 2 X · ∇2 X = 2
(
∇X
)2

, (P.5)

as ∇2 X = ∇2(X2 − X1) = ∇2 X2 − ∇2 X1 ≡ 0 within �. Therefore, the equality
(P.3) becomes: ∫∫∫

�

(
∇X
)2

d� = 0, (P.6)

which is satisfied only if the non-negative integrand function:

∇X = ∂X

∂x
+ ∂X

∂y
+ ∂X

∂z
, (P.7)

vanishes identically in �. This is possible only if the partial derivatives of X are null
everywhere in �, i.e., if the function X is constant there. Since by assumption X is
null in S, it must be null at every point of �.

49 George Green (1793–1841): English mathematician and physicist. Almost self-taught, he was
a pioneer in exploring the theory of potential, anticipating the subsequent work of Maxwell and
Thomson.
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Fig. P.1 Scheme for
theorem no. 6

Theorem No. 3

If the harmonic function X1 is null on the surface S which delimits the region �, it
is null everywhere inside �.

Let X2 be an identically null function in D1. It is clearly a spherical harmonic;
it also coincides with X1 on the contour S and therefore, according to the previous
theorem, at each point of �.

Theorem No. 4

If the gradients of the harmonic functions X1 and X2 coincide on the contour S of
the region � inside the intersection of the domains D1 and D2, at any point of � the
two functions differ at most by an additive constant.

As for theorem 4, it is proved that the first partial derivatives of the function X =
X2 − X1 are null everywhere in �. In this case the relation (P.4) is satisfied because,
by assumption, ∇X = 0 on the whole surface S. The equality of the derivatives of
X proves the constancy of the function; but the assumptions do not imply that the
constant also vanishes.

Theorem No. 5

If the gradient of the harmonic function X1 is null on the contour S of�, the function
itself is constant at every point of �.

The gradient of a constant function X2 is null everywhere, so it coincides with
that of X1 on S. According to the previous theorem, X1 differs from the constant X2

at most by an additive constant throughout �, and it is therefore itself a constant.
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Theorem No. 6

If the region � bounded by S is internal to D, at each point P inside � the harmonic
function X satisfies the relation:

X (P) = 1

4π

∫∫
S

(
X∇1

r
− 1

r
∇X

)
· dS, (P.8)

where r is the distance of P from the surface element dS.
The function 1/r is harmonic everywhere but at the point P where it is singular.

Let S′ be the surface of a sphere of volume �′, radius R, and center P , inside �

(Fig.P.1).We apply the Green theorem (no. 2) to the difference between the functions
X and 1/r within the region limited by the surfaces S and S′, i.e., within the region
� deprived of that occupied by the sphere of radius R. It is:

∫∫
S−S′

(
X∇1

r
− 1

r
∇X

)
· dS =

= −
∫∫∫

�−�′

(
X∇ ·∇1

r
− 1

r
∇ ·∇X

)
d� = 0, (P.9)

as∇ ·∇
(
1/r

)
= 0 and∇ ·∇X ≡ 0 everywhere in�. Considering that the vector dS

is oriented outwards on S and inwards on S′, the equality (P.9) allows to write:

∫∫
S

(
X∇1

r
− 1

r
∇X

)
· dS =

∫∫
S′

(
X∇1

r
− 1

r
∇X

)
· dS. (P.10)

On S′ (sphere of radius R) the functions
1

r
and ∇1

r
· dS

d S
are constants and equal

to
1

R2
and

1

R
respectively, and therefore the integral at the second term of (P.10)

becomes:

1

R2

∫∫
S′

X d S − 1

R

∫∫
S′
∇X · dS =
= 4π 〈X (S′)〉 − 4π R〈∣∣∇X (S′)

∣∣
n〉, (P.11)

where the symbol 〈 〉 indicates the average value of the function X and of the radial
component of the gradient on the spherical surface S′. Substituting in (P.11) and
(P.10) and passing to the limit for R → 0, we finally obtain the formula (P.9).
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Theorem No. 7

The value of the harmonic function X at any point P inside the domain D is equal to
the average value that the function assumes on the surface and on the entire volume
of any sphere of center P , provided that it is internal to D.

Apply the formula (P.9) to the surface S of a sphere of center P and generic radius
r ≤ R:

X (P) = 1

4π

∫∫
S

(
X

r
r

− 1

r
∇X

)
· dS =

= 1

4π r2

{∫∫
S

X dS − r
∫∫

S
∇X · dS

}
, (P.12)

and, based on the theorem no. 1:

X (P) = 1

4π

∫∫
S

X dS = 〈X (S)〉
4π r2

∫∫
S

dS = 〈X (S)〉. (P.13)

This shows that the value assumed by X in P is equal to the average value of the
function on the surface of the sphere S. Multiplying both terms of (P.13) by dr , and
integrating between 0 and R, we have:

∫ R

0
X (P) dr = 1

4π

∫∫∫
�

X

r2
d�, (P.14)

that is:

∫ R

0
X (P) dr = 〈X (�)〉

4π

∫∫∫
�

d�

r2
=

= 〈X (�)〉
4π

∫ 2π

0
dφ

∫ π

0
sin θ dθ

∫ R

0
dr = R 〈X (�)〉. (P.15)

Theorem No. 8

If X is harmonic and regular in the domain D, it has no relativemaximumorminimum
within D.

If P is a point internal to D where X has a maximum, there must be a subset
D′ about P such that at all the points Q, but P itself, the inequality X (P) > X (Q)

holds. Let � be a sphere of surface S and center P , entirely contained in D′. Then at
all points of S, X < X (P). But this is absurd because, owing to the previous theorem,
X (P) = 〈X (S)〉. You can similarly prove the theorem for the minima.
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P.2 Special Problems

In conclusion, we recall two famous problems dealing with the search for solutions
of the Laplace equation under special boundary conditions. They are important for
searching of the gravitational potential (see, as an example, Sect. 5.4).

Dirichlet Problem

We search for a harmonic and regular function in the domain D of frontier S that
satisfies the condition of assuming values assigned continuously on S.

If such a function exists, theorem no. 2 ensures that it is unique. In fact, using
the theory of integral equations, it can be proven that the problem of Dirichlet has a
solution under convenient hypotheses on the domain D. We now show the nature of
these solutions.

Let X◦ be a continuous function defined in S, which is the searched spherical
harmonic. By the theorem no. 6, at any point P inside D:

X (P) = 1

4π

∫∫
S

(
X◦∇1

r
− 1

r
∇X◦

)
· dS. (P.16)

Let g be a harmonic and regular function in D. By applying the Green (theorem no.
2 above) to the difference between X and g, we have:

∫∫
S

(
X◦∇g − g ∇X◦

)
· dS = 0. (P.17)

The difference between (P.16) and (P.17) gives:

X (P) = 1

4π

∫∫
S

{
X◦
(
∇1

r
− ∇g

)
−
(
1

r
− g

)
∇X◦

}
dS. (P.18)

Therefore, if the harmonic function g coincides with 1/r on S, the expression (P.18)
becomes:

X (P) = 1

4π

∫∫
S

X◦∇
(
1

r
− g

)
· dS = 1

4π

∫∫
S

X◦∇G · dS, (P.19)

with the position G = 1

r
− g. This expression solves the Dirichlet problem as long

as the function G is known. The latter is called Green function, and it is clearly a
function of the points P inside D and the points Q belonging to S. Furthermore,
it is harmonic and regular everywhere in D but in P , and shares the reciprocity
relation: G(P, Q) = G(Q, P). We can say that the latter property demonstrates
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the interchangeability between source and object point, i.e., the interchangeability
between cause and effect.

Neumann50 problem. We look for a harmonic and regular function in the domain
D bordered by S, when the gradient on S is given.

According to theorem no. 1, this problem does not admit a solution when:

∫∫
∇X◦ · dS �= 0. (P.20)

Furthermore, theorem no. 4 proves that, if the solution exists, it cannot be unique.

50 Carl Gottfried Neumann (1832–1925): Germanmathematician, one of the forefathers in the study
of integral equations.



Appendix Q
On the Principles of Analytical Mechanics

Dante Alighieri, Paradise

L’amor che move il sole e l’altre stelle
(Love that moves the Sun and other stars).

Q.1 Variational Formulation of Motion

The laws of motion can be derived starting from a principle formulated in the XVIII
century by Maupertuis: in determining the motion of a system between two assigned
extremes, nature chooses the most economic among all possible alternatives, where
the adjective ‘economic’ refers to some criterion of judgment.

We want to describe the motion of a mechanical system B in a hyperspace (phase
space) of n dimensions, as many as are the degrees of freedom (cf. Sect. 4.8.4). We
consider a reference system where each axis represents one generalized coordinate
q j ( j = 1, . . . , n). At any time, the set of n coordinates of B, q j (t) identifies a point
P in the hyperspace, and the curve that it draws while t varies is the trajectory of B.

Clearly, at any t a conjugated momentum q̇ j (t) is associated to the point P .
Assuming that the configurations of the system are fixed at two epochs t1, t2 (which
means knowing the coordinates of the two representative points in the hyperspace of
the generalized coordinates), we try to determine the trajectory of the motion in the
phase space in the time interval �t = t2 − t1.

A priori, the trajectory can be any one of the infinite number of curves joining the
two points of the hyperspace. But, if we accept a deterministic view ofmechanics, we
must pretend that the trajectory is one and only one. To identify it, all we have to do
is to compare the various paths geometrically possible and take the most economic
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one. To this end we then define the action S:

S =
∫ t2

t1

λ(q j , q̇ j , t)dt, (Q.1)

where λ is the function representing the ‘cost’ of the operation in the interval dt . It
depends on the particular path and therefore on the dynamic coordinates q j and q̇ j .
Its minimum determines the true trajectory.

To better clarify what is behind this procedure, think of the optical principle
devised by Fermat, which, in its strong form, states that light propagates in a non-
homogeneous medium in such a way that the travel time:

t =
∫ s1

s◦

ds

v(t)
, (Q.2)

is the least.
Minimizing S means placing δS = 0, where the symbol δ denotes the functional

variation with respect to the overall generalized trajectories. It is used instead of d as
trajectories are compared for different values of the coordinates q j at the same time t .
Let q◦

j (t) be the true trajectory and qi
j (t) any other curve that joins the configurations

identified by the two sets of n generalized coordinates q◦
j (t1) and q◦

j (t2). Then:

qi
j (t) = q◦

j (t) + δq◦
j (t), (Q.3)

where the difference δq◦
j (t) is called variation. By hypothesis, the variation at the

extremes of the trajectory must be zero, that is:

δq◦
j (t1) = δq◦

j (t2) = 0. (Q.4)

Since the difference between q◦ and qi is infinitesimal, the same happens for the
relative actions, that is:

S◦ =
∫ t2

t1

λ(q◦, q̇◦, t)dt, and Si =
∫ t2

t1

λ(qi , q̇ i , t)dt. (Q.5)

So:

Si − S◦ = δS =
∫ t2

t1

[
λ(qi , q̇ i , t) − λ(q◦, q̇◦, t)

]
dt =

=
∫ t2

t1

[
λ(q◦ + δq◦, q̇◦ + δq̇◦, t) − λ(q◦, q̇◦, t)

]
dt. (Q.6)

Expanding the argument of the integral in a power series of δq◦ and δq̇◦, and trun-
cating the expansion at the first order, we obtain:
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δS =
∫ t2

t1

(
∂λ

∂q◦
j

δq◦
j + ∂λ

∂q̇◦
j

δq̇◦
j

)
dt. (Q.7)

Since δq̇ = d
dt ∂q, integration by parts of the second term in brackets gives:

δS =
∫ t2

t1

(
∂λ

∂q◦
j

δq◦
j + ∂λ

∂q̇◦
j

d

dt
δq◦

j

)
dt =

=
∫ t2

t1

∂λ

∂q◦
j

δq◦
j dt + ∂λ

∂q̇◦
j

δq◦
j

∣∣∣∣
t2

t1

−
∫ t2

t1

d

dt

∂λ

∂q̇◦
j

δq◦
j dt. (Q.8)

Finally, observing that the second term in the last expression is null, we have:

δS =
∫ t2

t1

[(
∂λ

∂q◦
j

− d

dt

∂λ

∂q̇◦
j

)
∂q◦

j

]
dt = 0. (Q.9)

Since the variations δq◦
j are completely arbitrary, the Eq. (Q.9) will always be true if

and only if:
d

dt

∂λ

∂q̇◦
j

− ∂λ

∂q◦
j

= 0. (Q.10)

These equations are identical to Lagrange’s equations when λ is identified with L,
which, as we already know, is a function of the dynamical coordinates and time.

Q.2 Conservation Laws

Assuming that the dynamical state function λ is the Lagrangian function, we will
see how, under suitable hypotheses, conservation laws known by other way can be
formulated and how their scope goes well beyond analytical demonstration. For a
system with n degrees of freedom, the integration of the equations of motion leads
to determine 2n constants that depend on the initial conditions and can be expressed
as functions of q j and q̇ j . Such are the first integrals. But not all of them have the
same importance; some, in fact, are additive.

This important property allows us to know the relative value of the whole system
by means of a simple sum of the values pertaining to the single constituents, if
they do not interact. It is therefore possible, given the state of the system before
and after the interaction, to obtain information about the interaction itself. These
conservation laws are based on the properties of isotropy and homogeneity of space
and homogeneity of time, properties which may depend on the reference system (cf.
Sect. 1.2). The systems in which they occur are called inertial reference systems.



376 Appendix Q: On the Principles of Analytical Mechanics

Let us start by considering the homogeneity of time. In this case, the Lagrangian
function, L, of an isolated system is not an explicit function of time t , and therefore
the differential:

d

dt
L =

n∑
j=1

∂L

∂q j
q̇ j +

n∑
j=1

∂L

∂q̇ j
q̈ j , (Q.11)

lacks the term:
∂L

∂t
= 0. (Q.12)

Using the equations of Lagrange (Q.10), we have:

d

dt
L =

n∑
j=1

q̇ j
d

dt

∂L

∂q̇ j
+

n∑
j=1

∂L

∂q̇ j
q̈ j = d

dt

n∑
j=1

∂L

∂q̇ j
q̇ j , (Q.13)

or:

d

dt

⎛
⎝ n∑

j=1

∂L

∂q̇ j
q̇ j − L

⎞
⎠ = 0, (Q.14)

from which:
n∑

j=1

∂L

∂q̇ j
q̇ j − L = const = E, (Q.15)

since the left term of this equation has the physical dimension of an energy.
The additivity ofE follows directly from the additivity of the Lagrangian function,

L. The energy conservation law also applies to a non-isolated system as long as
it is immersed in a constant external field, since the only hypothesis made is the
independence of L from t . Systems where E is constant are called conservative.

Let us now consider the homogeneity of space. It allows us to arbitrarily choose
the origin of the reference system, or better to be able to translate the latter without
changing L. If −→ε is the radius vector joining O and O ′, origins of two inertial
references T and T ′ translated from each other, then r′

j , radius vector of the j-th
point in T ′, will be:

r′
j = r j + −→ε . (Q.16)

Obviously −→ε is constant and arbitrary, so:

ṙ′
j = ṙ j . (Q.17)

The variation of L for this translation will be:

δL =
n∑

j=1

∂L

∂r j
δr j +

n∑
j=1

∂L

∂ṙ j
δṙ j = −→ε

n∑
j=1

∂L

∂r j
= 0, (Q.18)
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from which:
n∑

j=1

∂L

∂r j
= 0. (Q.19)

The sense of this equality is that the sum of all the forces acting on all the particles

of a closed system equals zero:
n∑

j=1

F j =
n∑

j=1

ṗ j = 0, where:

ṗ j = ∂L

∂r j
, (Q.20)

is the time derivative of the generalized momentum vector. Using the Lagrange
equations, it is:

n∑
j=1

d

dt

∂L

∂ṙ j
= d

dt

n∑
j=1

∂L

∂ṙ j
= 0, (Q.21)

and thus:
n∑

j=1

∂L

∂ṙ j
=

n∑
j=1

p j = −−→
const = P. (Q.22)

Due to its physical dimensions, P is the total momentum vector. Therefore, the
momentum of the system is equal to the vector sum of the individual components
even if they interact, differently from the case of the energy. In this respect it seems
useful to stress that P is a vector while E is a scalar.

We come now to the isotropy of space. This property implies that a rotation of the
reference systemchanges r j , but it leaves unchanged theL function. Let δ−→ϕ = |δϕ|k
be the rotation vector, with |δϕ| equal to the amplitude of the rotation. In this case:

δr j = δ−→ϕ × r j ,

δṙ j = δ−→ϕ × ṙ j ,
(Q.23)

with which:

δL =
n∑

j=1

∂L

∂r j
δr j +

n∑
j=1

∂L

∂ṙ j
δṙ j = 0. (Q.24)

With the usual substitutions and (Q.20), (Q.22):

δL =
n∑

j=1

[
ṗ j

(
δ−→ϕ × r j

)]
+

n∑
j=1

[
p j

(
δ−→ϕ × ṙ j

)]
=

= δ−→ϕ
n∑

j=1

[(
r j × ṗ j

)
+
(

ṙ j × p j

)]
= δ−→ϕ d

dt

n∑
j=1

(
r j × p j

)
= 0, (Q.25)
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from which:
d

dt

n∑
j=1

(r j × p j ) = 0, (Q.26)

and therefore:
n∑

j=1

(r j × p j ) = −−→
const = J, (Q.27)

where J is the total angular momentum. This vector too is additive, regardless of any
interactions.

In conclusion, for an isolated system there are 7 scalar first integrals: the energy
E, the three components of P, and the three components of J.

Q.3 Maupertuis’s Principle

A mathematical formulation of the Maupertuis principle is now given which is very
useful for subsequent applications.51 To formulate the principle of least action we

have considered the integral S =
∫ t2

t1

Ldt , along different trajectories that join the

two fixed points of the space identified by the n coordinates q j (t1) and q j (t2), then
looking for the minimum value of the action S.

The concept of action has a greater scope. It allows us to compare the trajectories
that, although having the same origin

(
fixed values of q j (t1)

)
, yet have different

extremes
(
q j (t2)free

)
, or pass through the same point q j (t) at different epochs.

In fact, by rewriting the variation of the action and integrating by parts, given that
under these new hypotheses δq j (t2) �= 0, we obtain a variation δS (or d S) which
depends on the coordinates q j or on time. Without going into details, we give the
more general expression, valid even if the hypotheses made on the second integration
term are also extended to the action. We find:

d S =
n∑

j=1

p f
j dq f

j − H f dt −
n∑

j=1

pi
j dqi

j + Hi dt, (Q.28)

where the superscripts i and f stay for initial and final. The expression is simplified
if there is no explicit dependence on time; in this case dt = 0 and d = δ. Then,
the application of the principle of least action not only determines the shape of the
trajectory but also the dependence on time of the position on the trajectory. It is

51 “L’action est proportionnelle au produit de la masse par la vitesse et par l’espace. Maintenant,
voici ce principe, si sage, si digne de l’Être Suprême: lorsqu’il arrive quelque changement dans
la Nature, la quantité d’action employée pour ce changement est toujours la plus petite qu’il soit
possible”; P.L.M. de Maupertuis, Principe de la moindre quantité d’action pour la mécanique,
1744.
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therefore noted that the final state of a motion cannot be any function of the initial
state but must be an exact differential. Suppose now that the Lagrangian system does
not explicitly depend on time t , so thatH = E = const. Furthermore, the final instant
is changed while the coordinates of position are kept fixed. In this case, from (Q.28)
we have:

δS = −Hdt. (Q.29)

Considering only trajectories for which energy conservation occurs, it follows that:

δS + Edt = 0. (Q.30)

We specify δS from (4.272):

S =
∫ q f

j

qi
j

n∑
j=1

p j dq j − E(t f − ti ). (Q.31)

Placing:

S◦ =
∫ q f

j

qi
j

n∑
j=1

p j dq j , (Q.32)

and putting it in (Q.30), it follows:

δS◦ = 0. (Q.33)

This S◦ is called abbreviated or Lagrangian action. Note that in this case the integra-
tion variables are the coordinates and not the time. Through the (Q.33), the abbre-
viated action has a minimum in relation to all the trajectories that satisfy the energy
conservation law and that pass through the final configuration at an arbitrary time.
However, in order to use the (Q.33), it is necessary to set everything according to the
coordinates q j (including the differential dt and H that appear in the (Q.33). After
the appropriate substitutions and reductions, we have:

S◦ =
∫ q f

qi

⎡
⎣2(E − U)

n∑
k, j=1

ak, j (q) dqkdq j

⎤
⎦

1/2

, (Q.34)

where:

L = 1

2

n∑
k, j=1

ak, j (q) dq̇kdq̇ j − U(q), (Q.35)

and the conjugated moments are:
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pk = ∂L

∂q̇k
=

n∑
k, j=1

ak, j (q) dq̇k . (Q.36)

The expression (Q.33) is called Maupertuis’s principle, although the analytical for-
mulation was given by Lagrange and Euler. The importance of this principle lies in
the fact that it determines the trajectories of the motion under suitable conditions.

Q.4 The Geodesic Lines

This section presents an application of what we have just seen in the previous one.
We consider a system not subject to a potential (U ≡ 0):

H = E = T = 1

2

n∑
k, j=1

ak, j (q1, . . . , qn) q̇k q̇ j . (Q.37)

In the n-dimensional space (q1, . . . , qn), we introduce the metric:

ds2 =
n∑

k, j=1

ak, j (q1, . . . , qn) dqkdq j . (Q.38)

In this case the length l of the arc connecting two points Pi (qi
j ) and Pf (q

f
j ) is given

by:

l =
∫ q f

qi

ds =
∫ q f

qi

⎛
⎝ n∑

k, j=1

ak, j (q1, . . . , qn) dqkdq j

⎞
⎠
1/2

. (Q.39)

Using (Q.34) we obtain:

S◦ = √
2E
∫ q f

qi

⎛
⎝ n∑

k, j=1

ak, j (q1, . . . , qn) dqkdq j

⎞
⎠
1/2

= √
2E l, (Q.40)

where E is the same constant for any line joining the two points Pi and Pf :

δS◦ = δl = δ

∫ q f

qi

⎛
⎝ n∑

k, j=1

ak, j(q1, . . . , qn)dqkdq j

⎞
⎠
1/2

= 0. (Q.41)
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In this way, the “true” trajectory is distinguished from the other possible trajectories
in that the length of the corresponding curve arc is minimumwith respect to the other
arcs. The trajectories that satisfy (Q.41) are called geodesic lines.

Consider now a system for which U �= 0. From (Q.34) it follows:

S◦ =
∫ q f

qi

⎛
⎝2(E − U)

n∑
k, j=1

ak, j dqkdq j

⎞
⎠
1/2

, (Q.42)

and the geodesic line will be such that:

δS◦ = δ

∫ q f

qi

⎛
⎝2(E − U)

n∑
k, j=1

ak, j (q1, . . . , qn)dqkdq j

⎞
⎠
1/2

. (Q.43)

Comparing (Q.43) with (Q.41), we can state that the geodesics for a system subject
to potential are rectilinear trajectories in a space with metric:

ds2 = (E − U)

n∑
k, j=1

ak, j (q1, . . . , qn) dqkdq j . (Q.44)

The concept of geodesic line is revolutionary as it transforms a dynamical into a
geometric problem. At the basis of the general relativity theory, it allowed us to
solve Mercury’s perihelion precession problem even without mastering Einstein’s
theory in depth, just knowing themetric which, of course, is the solution of Einstein’s
equation (see Sect. 4.14).



Appendix R
Space-Time Invariant and Conservation
Principles

Richard P. Feynman

It doesn’t matter how beautiful your theory is, it doesn’t
matter how smart you are. If it doesn’t agree with experi-
ment, it’s wrong.

R.1 Continuous Trajectories

The intimate connection between conservation laws and the existence of symmetries
in the description of problems or of the invariance with respect to changes in the view
point of both the observer and the reference system, has been stressed repeatedly.
This connection becomes clear when it is examined in the context of the Hamilton
variational principle. The strategy is to compare two contiguous trajectories (in space
and time), both possible in the sense of the variational principle (they are therefore
not virtual trajectories).Wewill represent themwith the generalized coordinates q(t)
and q ′(t) respectively.

Consider the motion in the time interval (t1, t2) for the coordinate system q and
(t1 + �t1, t2 + �t2) for the q ′. Unlike for virtual trajectories, in the present case it
is not legitimate to admit that the coordinates q coincide with the q ′ at the ends of
the trajectories. In fact, we will have:

�qi (t1,2) = q ′
i (t1,2 + �t1,2) − qi (t1,2) (i = 1, . . . , N ). (R.1)

As we have done for virtual trajectories, we write q ′
i (t) = qi (t) + δqi (t) (but note

that here δ does not represents a virtual variation, but an infinitesimal difference at
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constant time between the same coordinates in two contiguous trajectories), with
which:

�qi (t1) = qi (t1 + �t1) + δqi (t1 + �t1) − qi (t1) ≈ δqi (t1) + q̇i (t1)�t1 , (R.2)

valid for the lower extreme t1 when �t1 → 0. A similar expression applies to the
upper extreme t2. The difference between the variations in the two trajectories is:

�S =
∫ t2+�t2

t1+�t1

L(q + δq, q̇ + δq̇, t) dt −
∫ t2

t1

L(q, q̇, t) dt =

=
∫ t2

t1

(
L(q + δq, q̇ + δq̇, t) − L(q, q̇, t)

)
dt +

+
∫ t1

t1+�t1

L(q + δq, q̇ + δq̇, t) dt +
∫ t2+�t2

t2

L(q + δq, q̇ + δq̇, t) dt =

=
∫ t2

t1

(
L(q + δq, q̇ + δq̇, t) − L(q, q̇, t)

)
dt +

+ L(q, q̇, t)�t
∣∣∣t2
t1
, (R.3)

where, in deriving the last expression, the terms of the second order in δqi and δq̇i

have been neglected. We now have to compute the integral in (R.3) from t1 to t2. It
is:

∫ t2

t1

(
L(q + δq, q̇ + δq̇, t) − L(q, q̇, t)

)
dt =

=
∫ t2

t1

N∑
i=1

(
∂L

∂qi
δqi + ∂L

∂q̇i
δq̇i

)
dt =

=
∫ t2

t1

dt
N∑

i=1

δqi

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
dt +

N∑
i=1

∂L

∂q̇i
δqi

∣∣∣∣∣
t2

t1

. (R.4)

It must zero because the trajectories are both possible; therefore the Lagrange equa-
tions apply to them (4.24). On the other hand, the last term is not necessarily null (as
it would be in the case of virtual trajectories). In conclusion:

�S =
(
L�t +

N∑
i=1

∂L

∂q̇i
δqi

)∣∣∣∣∣
t2

t1

. (R.5)

Replacing δqi with the expression given by (R.2) and introducing the conjugated
moments and the Hamilton function, we finally have:
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�S =
(

N∑
i=1

∂L

∂q̇i
�qi −

[
N∑

i=1

∂L

∂q̇i
q̇i − L

]
�t

)∣∣∣∣∣
t2

t1

=

=
N∑

i=1

pi�qi − H�t

∣∣∣∣∣
t2

t1

. (R.6)

If�qi (t1,2) = 0 and�t1,2 = 0 (and therefore the two paths coincide), it is obviously
�S = 0. But the condition of coincidence is only necessary; in other words, there
may be cases where, even if �qi (t1,2) �= 0 or �t1,2 �= 0, it is also �S = 0. This is
what we are going to verify.

R.2 Time-Invariance and Conservation of Energy

Assume that �qi = 0 and �t1 = �t2 �= 0; this means admitting that the mechanical
system follows an identical path, in the same time interval (t2, t1), both if the motion
starts at t1 (and ends at t2) and if it starts at t1 + �t1 (and ends at t2 + �t2 = t2 + �t1).
Therefore, the two trajectories considered in the previous paragraph coincide entirely
except in the origin of the time scale. The difference of the �S variation given by
(R.6) must therefore be zero and equal to:

�S = −H
∣∣∣t2
t1

�t = 0. (R.7)

This can happen if and only if H(t1) = H(t2), i.e., if the Hamiltonian does not
explicitly depend on time. But, based on (4.101), we know that in this case the total
derivative ofHwith respect to time is also null; therefore, theHamiltonian is constant
and coincides with the total energy of the system. In other words, the invariance
with respect to a translation of the time coordinate implies the conservation of the
(Hamiltonian) energy of the system.52

R.3 Invariance to Translations and Conservation of
Moment

We now identify the two trajectories of (Sect.R.1) with the same one seen by two
parallel and concordant spatial reference systems (with origins not necessarily coin-
ciding). In other words, we want to see the effect of a translation in the Cartesian
coordinate system. Then it is convenient to convert the coordinates qi into Cartesian

52 This statement also proves that an experiment is reproducible if and only if it is performed on a
system with constant energy, provided that it is conveniently isolated.
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vectors, �qi → �r j = �r (the j index is suppressed because we are considering a
translation).Wewill then indicatewithp j the conjugatedmoments (in theLagrangian
sense) to r j . It will also be �t1 = �t2 = 0, so the (R.6) is reduced to:

�S =
⎛
⎝ N ′∑

j=1

p j

⎞
⎠∣∣∣t2

t1
· �r. (R.8)

Being the same phenomenon, the invariance of the description (�S = 0)with respect
to a translation of the coordinates in the conventional space involves:

N ′∑
j=1

p j

∣∣∣t2
t1

= 0, (R.9)

that is the conservation of the total momentum.53

R.4 Rotational Invariance and Angular Momentum
Conservation

We apply the same argument as in the previous section to the case where the two
reference systems are rotated relative to each other. Denoting by k the vector of the
direction chosen as the rotation axis, and with δφ the rotation angle (fixed), we have:

�r j = �φ k × r j , (R.10)

and:

�S =
( N ′∑

j=1

(
k × r j

) · p j

)∣∣∣∣∣∣
t2

t1

�φ =

=
( N ′∑

j=1

r j × p j

)∣∣∣∣∣∣
t2

t1

�φ k = M
∣∣∣t2
t1

�φ k, (R.11)

53 In a general sense it can be stated that the constancy of the momentum derives from the homo-
geneity of space.
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where J =
N ′∑

j=1

r j × p j is the total angular momentum with respect to the (fixed)

origin of the two systems. Once again we will admit the invariance of the description
(�S = 0), with which we deduce the constancy of the total angular momentum. In
fact, from (R.11), J(t1) must be equal to J(t2).
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293
true, 32, 34, 43, 44, 48, 52, 53, 57, 60, 61,

74, 75, 120, 124, 126, 207, 320
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Apsiadal precession
classical, 201
relativistic, 210
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201

B
Barycenter, 2, 10, 16, 28, 29, 31, 84, 88, 94–

96, 100, 106, 109, 241, 243, 256, 259,
265, 310, 315, 318

Bertrand theorem, 207
Bessel functions
first kind, 333, 335, 336, 340
modified, 340, 341
second kind, 270, 335, 340, 341

Beta function
regularized, 335

Binomial, 145, 219, 220, 223, 342, 350, 351
Birkhoff theorem
ergodic, 226

Bohr atom, 300

C
Canonical
conjugation, 156, 175–177, 184
elements, 177
equations, 140
invariants, 164, 166
transformations, 153, 156, 157, 159, 163,

164, 166, 167, 169, 170, 183, 184, 186,
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Cauchy product of series, 352
Central motion, 31, 32
Characteristic function, 155–160, 162, 163,

167–169, 183, 189, 193
Chebyshev criterion, 346
Clairaut equation, 262
CMB angular power spectrum, 363
Conical orbits
ellipse, 41
hyperbola, 46
parabola, 45

Conservation laws, 38, 81, 130, 153, 284,
375, 376, 379, 383

Coordinate system transformations, 279,
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Coriolis acceleration, 98
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D’Alembert’s criterion of the ratio for series
with positive terms, 338

Descartes rule, 91
Dirichlet problem, 370
Divergence theorem, 216, 285
Dynamical coordinates, 141, 154, 157, 159–

164, 166, 167, 169–173, 175, 182, 183,
186, 375

E
Earth’s rotational distortion, 259
Effective potential energy, 34, 35
Ellipsoid
oblate, 257, 258
prolate, 257

Elliptical integrals
complete, 342, 343
incomplete, 343, 344

Ephemerides, 61, 70
Equation of Jacobi, 182
Escape velocity, 50, 51, 76, 322
Euclidean space, 134, 216
Euler acceleration, 289
Euler formula, 113, 114, 351
Euler integral of first kind, 333
Euler-Mascheroni constant, 332
Euler’s reflection formula, 333

F
Fermat theorem
principle, 130

Ferrers functions, 362
First integrals, 7, 9, 10, 12–14, 19, 28, 31,

34, 37, 38, 81, 142–144, 153, 183, 226,
269, 375, 378

Focal parameter, 39, 43, 126, 207

G
Gamma function, 332
Gauss theorem
continuity, 214
flux, 214

Geodesics, 204, 206, 380, 381
Geosynchronous, 77, 78, 81
Gravitational
assist, 322
influence sphere, 319
law, 1
radius, 19, 51, 205, 212

Green
function, 370
theorem, 368

H
Hamilton equations, 142, 153–157, 159,

160, 163, 164, 168, 169, 177, 182, 183,
195, 326

Hamilton function, 137, 141, 154, 183–185,
189, 384

Hamilton-Jacobi method, 188
Hamilton principle, 135, 140
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Lord Kelvin theorem, 229
surface, 229

Harmonic oscillator, 113
Hill surfaces, 100, 319
Hodograph, 56
Hohmann orbits, 78–80
Holonomic constraints, 134, 136
Homogeneous ellipsoid, 247, 250, 252, 254
Homogeneous function
Euler theorem, 21

Hyperspace, 164, 373

I
Inclination, 43, 60, 61, 74, 118, 145, 201,
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J
Jacoby
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identity, 143, 323
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K
Kepler equation, 45, 61, 64, 125, 201–203,

294–296
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associated, 231–234, 236, 357, 358
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Legendre polynomials
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Line of nodes, 43, 60, 61, 73, 281, 309, 310,
312, 313

Liouville theorem, 171
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N
N-body problem, 7, 8, 18, 19, 129, 153, 194,
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Noether theorem, 130
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Orbital system, 39, 43, 61, 63
Orthogonal
functions, 345, 348
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Osculating eccentric anomaly, 203
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P
Pappus-Guldinus theorem, 265
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special, 194, 197
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Poincaré theorem, 7, 202
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160, 163, 166, 169, 170, 172, 173, 176,
177, 196, 323, 325, 328

Poisson equation, 217, 227
Poisson theorem for Poisson brackets, 144
Potential
ellipsoid, 247, 249, 252, 254, 255, 258
homogeneous circular torus, 262, 265, 267

homogeneous spheroid, 242, 243
infinitely thin ring, 263, 270, 271, 343
massive point, 2, 19, 20, 218, 219, 221,

232
spherical body, 222
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thin spherical layer, 222, 241, 243, 245
Potential energy, 14–16, 19–22, 31, 34, 35,

130, 217
Precession
apsidal, 201

Proper time, 204, 206

Q
Quantized angular momentum, 300
Quantum numbers, 300

R
Reduced mass, 30, 31, 116, 201, 267
Reference system
rotation, 12, 377
translation, 11

Relative motion, 31, 287
Resonance
spin-orbit, 2, 3, 213

Restricted three-body problem
collinear solutions, 95, 315
triangular solutions, 95, 315

Ricci tensor, 205
Roche lobes, 103
Rodriguez formula, 349, 354
Rolle theorem, 354
Rosette pattern, 211
Rotational distortion of the Earth, 259

S
Schwarzschild metric, 51, 205
Schwarz theorem, 162
Secular terms, 200
Self-gravitating systems, 3, 4, 15, 28, 292
Separation of variables, 186, 230
Space flight, 59, 75, 76, 110
Specific energy, 31, 48, 50, 59, 178, 189, 193

Sphere of influence, 78, 320
Spherical harmonics
associated functions, 232
integer degree, 232, 234–237, 239, 241,

359, 360
orthogonality, 245, 361
representation, 359
sectoral, 235, 236, 359, 360, 362
solid, 228–231, 359, 365
tesseral, 235, 236, 240, 359, 360, 362
zonal, 235, 236, 359, 360, 362

Spherical layer
homogeneous, 223–225, 242

Newton theorem, 225
thin, 15, 222, 223, 225, 241, 243, 245, 265

Spherical trigonometry, 273
Stability, 35, 83, 110–113
Star S2, 211
Stationary configurations, 94, 95
Stokes theorem
curl, 286

Supermassive black hole, 211
Symmetry, 41, 93, 101, 102, 130, 140, 153,

171, 222, 227, 240, 241, 251, 257, 259,
265, 267, 270, 276, 307, 321, 383

T
Taylor series, 111
Three-body problem, 7, 81, 95–97, 107, 108

Timelike interval, 206
Tisserand theorem, 99
Trajectory, 19, 30, 34–36, 48, 49, 65, 72, 76,

117, 130–133, 207, 373, 374, 378–381,
383–385

Transformations
canonical, 153, 156, 157, 159, 163, 164,

166, 167, 169, 170, 183, 184, 186, 192

contact, 167, 169
identity, 167, 168
infinitesimal, 167, 169, 170

Two-body problem, 1, 8, 18, 19, 25, 28, 30,
32, 34, 38, 39, 48, 50, 53, 59, 66, 81,
96, 116, 126, 129, 145, 147, 178, 188,
204, 207, 210, 299, 309, 319, 341, 343

V
Variational principle
Maupertuis, 373

Variation of elements, 194
Variations of constants, 197, 303, 304
Vector operators, 217, 284, 285
Vieta theorem, 208
Virial theorem, 15, 20, 22, 50
Virtual displacements, 130–132, 136, 137,

167
Virtual work principle, 130
Visual binary orbits, 309

W
Wronskian determinant, 303
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